These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 32609710)

  • 1. Heterodyne period measurement in a scanning beam interference lithography system.
    Jiang S; Lü B; Song Y; Liu Z; Wang W; Shuo L; Bayanheshig
    Appl Opt; 2020 Jul; 59(19):5830-5836. PubMed ID: 32609710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precision fringe period metrology using an LSQ sine fit algorithm.
    Xiang X; Li M; Wei C; Zhou C
    Appl Opt; 2018 Jun; 57(17):4777-4784. PubMed ID: 30118093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scan angle error measurement based on phase-stepping algorithms in scanning beam interference lithography.
    Li M; Xiang X; Zhou C; Wei C
    Appl Opt; 2019 Apr; 58(10):2641-2649. PubMed ID: 31045064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of ultra-high aspect ratio silicon grating using an alignment method based on a scanning beam interference lithography system.
    Chen X; Jiang S; Li Y; Jiang Y; Wang W; Bayanheshig
    Opt Express; 2022 Oct; 30(22):40842-40853. PubMed ID: 36299010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-range in situ picometer measurement of the period of an interference field.
    Xiang X; Jia W; Xiang C; Li M; Bu F; Zhu S; Zhou C; Wei C
    Appl Opt; 2019 Apr; 58(11):2929-2935. PubMed ID: 31044895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method for exposure dose monitoring and control in scanning beam interference lithography.
    Song Y; Liu Y; Jiang S; Zhu Y; Zhang L; Liu Z
    Appl Opt; 2021 Apr; 60(10):2767-2774. PubMed ID: 33798150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving unlimited recording length in interference lithography via broad-beam scanning exposure with self-referencing alignment.
    Ma D; Zhao Y; Zeng L
    Sci Rep; 2017 Apr; 7(1):926. PubMed ID: 28424475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beam drift error and control technology for scanning beam interference lithography.
    Wang W; Song Y; Jiang S; Pan M; Bayanheshig
    Appl Opt; 2017 May; 56(14):4138-4145. PubMed ID: 29047546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. General mathematical model for the period chirp in interference lithography.
    Bienert F; Graf T; Ahmed MA
    Opt Express; 2023 Feb; 31(4):5334-5346. PubMed ID: 36823816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active control technology of a diffraction grating wavefront by scanning beam interference lithography.
    Liu Z; Yang H; Li Y; Jiang S; Wang W; Song Y; Bayanheshig ; Li W
    Opt Express; 2021 Nov; 29(23):37066-37074. PubMed ID: 34808785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precision measurement of X-axis stage mirror profile in scanning beam interference lithography by three-probe system based on bidirectional integration model.
    Liu Z; Jiang S; Li X; Song Y; Li W; Bayanheshig
    Opt Express; 2017 May; 25(9):10312-10321. PubMed ID: 28468404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two Degree-of-Freedom Fiber-Coupled Heterodyne Grating Interferometer with Milli-Radian Operating Range of Rotation.
    Yang F; Zhang M; Zhu Y; Ye W; Wang L; Xia Y
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Focus calibration method based on the illumination beam scanning angle modulation in a grating alignment system.
    Zhang T; Ma Y; Li J; Sun T; Zhao X; Cui J
    Opt Express; 2021 Mar; 29(6):9429-9445. PubMed ID: 33820371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-degree-of-freedom displacement measurement using grating-based heterodyne interferometry.
    Hsieh HL; Pan SW
    Appl Opt; 2013 Sep; 52(27):6840-8. PubMed ID: 24085186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual displacement resolution encoder by integrating single holographic grating sensor and heterodyne interferometry.
    Hsu CC; Chen H; Chiang CW; Chang YW
    Opt Express; 2017 Nov; 25(24):30189-30202. PubMed ID: 29221051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Holographic fabrication of an arrayed one-axis scale grating for a two-probe optical linear encoder.
    Li X; Zhou Q; Zhu X; Lu H; Yang L; Ma D; Sun J; Ni K; Wang X
    Opt Express; 2017 Jul; 25(14):16028-16039. PubMed ID: 28789121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser direct writing of rotationally symmetric high-resolution structures.
    Haefner M; Pruss C; Osten W
    Appl Opt; 2011 Nov; 50(31):5983-9. PubMed ID: 22086024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weighted iterative algorithm for beam alignment in scanning beam interference lithography.
    Song Y; Wang W; Jiang S; Bayanheshig ; Zhang N
    Appl Opt; 2017 Nov; 56(31):8669-8675. PubMed ID: 29091682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new type of nanoscale reference grating manufactured by combined laser-focused atomic deposition and x-ray interference lithography and its use for calibrating a scanning electron microscope.
    Deng X; Dai G; Liu J; Hu X; Bergmann D; Zhao J; Tai R; Cai X; Li Y; Li T; Cheng X
    Ultramicroscopy; 2021 Jul; 226():113293. PubMed ID: 33993000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of fiber bragg gratings by a side-diffraction interference technique.
    El-Diasty F; Heaney A; Erdogan T
    Appl Opt; 2001 Feb; 40(6):890-6. PubMed ID: 18357069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.