These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 32609820)

  • 81. CRISPR-Cas-Mediated Chemical Control of Transcriptional Dynamics in Yeast.
    Cunningham-Bryant D; Sun J; Fernandez B; Zalatan JG
    Chembiochem; 2019 Jun; 20(12):1519-1523. PubMed ID: 30710419
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Genetic interaction mapping and exon-resolution functional genomics with a hybrid Cas9-Cas12a platform.
    Gonatopoulos-Pournatzis T; Aregger M; Brown KR; Farhangmehr S; Braunschweig U; Ward HN; Ha KCH; Weiss A; Billmann M; Durbic T; Myers CL; Blencowe BJ; Moffat J
    Nat Biotechnol; 2020 May; 38(5):638-648. PubMed ID: 32249828
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila.
    Gratz SJ; Ukken FP; Rubinstein CD; Thiede G; Donohue LK; Cummings AM; O'Connor-Giles KM
    Genetics; 2014 Apr; 196(4):961-71. PubMed ID: 24478335
    [TBL] [Abstract][Full Text] [Related]  

  • 84. CRISPR-Cas systems: ushering in the new genome editing era.
    Perez Rojo F; Nyman RKM; Johnson AAT; Navarro MP; Ryan MH; Erskine W; Kaur P
    Bioengineered; 2018; 9(1):214-221. PubMed ID: 29968520
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Inducible CRISPR-dCas9 Transcriptional Systems for Sensing and Genome Regulation.
    Wu H; Wang F; Jiang JH
    Chembiochem; 2021 Jun; 22(11):1894-1900. PubMed ID: 33433941
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1.
    Yamano T; Zetsche B; Ishitani R; Zhang F; Nishimasu H; Nureki O
    Mol Cell; 2017 Aug; 67(4):633-645.e3. PubMed ID: 28781234
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing.
    Xu X; Chemparathy A; Zeng L; Kempton HR; Shang S; Nakamura M; Qi LS
    Mol Cell; 2021 Oct; 81(20):4333-4345.e4. PubMed ID: 34480847
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Exploration of Microbial Diversity to Discover Novel Molecular Technologies.
    Zhang F
    Keio J Med; 2019; 68(1):26. PubMed ID: 30905885
    [TBL] [Abstract][Full Text] [Related]  

  • 89. CRISPR deactivation in mammalian cells using photocleavable guide RNAs.
    Zou RS; Liu Y; Ha T
    STAR Protoc; 2021 Dec; 2(4):100909. PubMed ID: 34746867
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR-Cas9 barcodes by scGESTALT.
    Raj B; Gagnon JA; Schier AF
    Nat Protoc; 2018 Nov; 13(11):2685-2713. PubMed ID: 30353175
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.
    Fonfara I; Richter H; Bratovič M; Le Rhun A; Charpentier E
    Nature; 2016 Apr; 532(7600):517-21. PubMed ID: 27096362
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Continuous genetic recording with self-targeting CRISPR-Cas in human cells.
    Perli SD; Cui CH; Lu TK
    Science; 2016 Sep; 353(6304):. PubMed ID: 27540006
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Comparison of Cas9 and Cas12a CRISPR editing methods to correct the W1282X-CFTR mutation.
    Santos L; Mention K; Cavusoglu-Doran K; Sanz DJ; Bacalhau M; Lopes-Pacheco M; Harrison PT; Farinha CM
    J Cyst Fibros; 2022 Jan; 21(1):181-187. PubMed ID: 34103250
    [TBL] [Abstract][Full Text] [Related]  

  • 94. CRISPcut: A novel tool for designing optimal sgRNAs for CRISPR/Cas9 based experiments in human cells.
    Dhanjal JK; Radhakrishnan N; Sundar D
    Genomics; 2019 Jul; 111(4):560-566. PubMed ID: 29605634
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Nucleic Acid-Dependent Conformational Changes in CRISPR-Cas9 Revealed by Site-Directed Spin Labeling.
    Vazquez Reyes C; Tangprasertchai NS; Yogesha SD; Nguyen RH; Zhang X; Rajan R; Qin PZ
    Cell Biochem Biophys; 2017 Jun; 75(2):203-210. PubMed ID: 27342128
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Harnessing CRISPR-Cas9 for Epigenetic Engineering.
    Guerra-Resendez RS; Hilton IB
    Methods Mol Biol; 2022; 2518():237-251. PubMed ID: 35666449
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Crystal structure of the anti-CRISPR, AcrIIC4.
    Kim GE; Lee SY; Park HH
    Protein Sci; 2021 Dec; 30(12):2474-2481. PubMed ID: 34676610
    [TBL] [Abstract][Full Text] [Related]  

  • 98. CRISPR: development of a technology and its applications.
    Derry WB
    FEBS J; 2021 Jan; 288(2):358-359. PubMed ID: 33300275
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Antagonistic conflict between transposon-encoded introns and guide RNAs.
    Žedaveinytė R; Meers C; Le HC; Mortman EE; Tang S; Lampe GD; Pesari SR; Gelsinger DR; Wiegand T; Sternberg SH
    Science; 2024 Jul; 385(6705):eadm8189. PubMed ID: 38991068
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Decrypting the mechanistic basis of CRISPR/Cas9 protein.
    Panda G; Ray A
    Prog Biophys Mol Biol; 2022 Aug; 172():60-76. PubMed ID: 35577099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.