BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32610065)

  • 1. Accelerating quantitative MR imaging with the incorporation of B
    Wu Y; Ma Y; Du J; Xing L
    Magn Reson Imaging; 2020 Oct; 72():78-86. PubMed ID: 32610065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deriving new soft tissue contrasts from conventional MR images using deep learning.
    Wu Y; Li D; Xing L; Gold G
    Magn Reson Imaging; 2020 Dec; 74():121-127. PubMed ID: 32956805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MANTIS: Model-Augmented Neural neTwork with Incoherent k-space Sampling for efficient MR parameter mapping.
    Liu F; Feng L; Kijowski R
    Magn Reson Med; 2019 Jul; 82(1):174-188. PubMed ID: 30860285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstruction of multicontrast MR images through deep learning.
    Do WJ; Seo S; Han Y; Ye JC; Choi SH; Park SH
    Med Phys; 2020 Mar; 47(3):983-997. PubMed ID: 31889314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy.
    Olberg S; Zhang H; Kennedy WR; Chun J; Rodriguez V; Zoberi I; Thomas MA; Kim JS; Mutic S; Green OL; Park JC
    Med Phys; 2019 Sep; 46(9):4135-4147. PubMed ID: 31309586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneously optimizing sampling pattern for joint acceleration of multi-contrast MRI using model-based deep learning.
    Seo S; Luu HM; Choi SH; Park SH
    Med Phys; 2022 Sep; 49(9):5964-5980. PubMed ID: 35678739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance parameter mapping using model-guided self-supervised deep learning.
    Liu F; Kijowski R; El Fakhri G; Feng L
    Magn Reson Med; 2021 Jun; 85(6):3211-3226. PubMed ID: 33464652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction.
    Schlemper J; Caballero J; Hajnal JV; Price AN; Rueckert D
    IEEE Trans Med Imaging; 2018 Feb; 37(2):491-503. PubMed ID: 29035212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images.
    Eo T; Jun Y; Kim T; Jang J; Lee HJ; Hwang D
    Magn Reson Med; 2018 Nov; 80(5):2188-2201. PubMed ID: 29624729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MR-based synthetic CT generation using a deep convolutional neural network method.
    Han X
    Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerating Cartesian MRI by domain-transform manifold learning in phase-encoding direction.
    Eo T; Shin H; Jun Y; Kim T; Hwang D
    Med Image Anal; 2020 Jul; 63():101689. PubMed ID: 32299061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerating T
    Meng Z; Guo R; Li Y; Guan Y; Wang T; Zhao Y; Sutton B; Li Y; Liang ZP
    Magn Reson Med; 2021 Mar; 85(3):1455-1467. PubMed ID: 32989816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly accelerated MR parametric mapping by undersampling the k-space and reducing the contrast number simultaneously with deep learning.
    Liu S; Li H; Liu Y; Cheng G; Yang G; Wang H; Zheng H; Liang D; Zhu Y
    Phys Med Biol; 2022 Sep; 67(18):. PubMed ID: 36001990
    [No Abstract]   [Full Text] [Related]  

  • 15. Fast and accurate reconstruction of human lung gas MRI with deep learning.
    Duan C; Deng H; Xiao S; Xie J; Li H; Sun X; Ma L; Lou X; Ye C; Zhou X
    Magn Reson Med; 2019 Dec; 82(6):2273-2285. PubMed ID: 31322298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid MR relaxometry using deep learning: An overview of current techniques and emerging trends.
    Feng L; Ma D; Liu F
    NMR Biomed; 2022 Apr; 35(4):e4416. PubMed ID: 33063400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SuperMAP: Deep ultrafast MR relaxometry with joint spatiotemporal undersampling.
    Li H; Yang M; Kim JH; Zhang C; Liu R; Huang P; Liang D; Zhang X; Li X; Ying L
    Magn Reson Med; 2023 Jan; 89(1):64-76. PubMed ID: 36128884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer learning in deep neural network based under-sampled MR image reconstruction.
    Arshad M; Qureshi M; Inam O; Omer H
    Magn Reson Imaging; 2021 Feb; 76():96-107. PubMed ID: 32980504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MR Image Reconstruction Using Deep Density Priors.
    Tezcan KC; Baumgartner CF; Luechinger R; Pruessmann KP; Konukoglu E
    IEEE Trans Med Imaging; 2019 Jul; 38(7):1633-1642. PubMed ID: 30571618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IKWI-net: A cross-domain convolutional neural network for undersampled magnetic resonance image reconstruction.
    Wang Z; Jiang H; Du H; Xu J; Qiu B
    Magn Reson Imaging; 2020 Nov; 73():1-10. PubMed ID: 32730848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.