These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Whole body deletion of AMP-activated protein kinase {beta}2 reduces muscle AMPK activity and exercise capacity. Steinberg GR; O'Neill HM; Dzamko NL; Galic S; Naim T; Koopman R; Jørgensen SB; Honeyman J; Hewitt K; Chen ZP; Schertzer JD; Scott JW; Koentgen F; Lynch GS; Watt MJ; van Denderen BJ; Campbell DJ; Kemp BE J Biol Chem; 2010 Nov; 285(48):37198-209. PubMed ID: 20855892 [TBL] [Abstract][Full Text] [Related]
5. Interactive Roles for AMPK and Glycogen from Cellular Energy Sensing to Exercise Metabolism. Janzen NR; Whitfield J; Hoffman NJ Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30373152 [TBL] [Abstract][Full Text] [Related]
6. The AMPK β2 subunit is required for energy homeostasis during metabolic stress. Dasgupta B; Ju JS; Sasaki Y; Liu X; Jung SR; Higashida K; Lindquist D; Milbrandt J Mol Cell Biol; 2012 Jul; 32(14):2837-48. PubMed ID: 22586267 [TBL] [Abstract][Full Text] [Related]
7. When phosphorylated at Thr148, the β2-subunit of AMP-activated kinase does not associate with glycogen in skeletal muscle. Xu H; Frankenberg NT; Lamb GD; Gooley PR; Stapleton DI; Murphy RM Am J Physiol Cell Physiol; 2016 Jul; 311(1):C35-42. PubMed ID: 27099349 [TBL] [Abstract][Full Text] [Related]
8. Inducible deletion of skeletal muscle AMPKα reveals that AMPK is required for nucleotide balance but dispensable for muscle glucose uptake and fat oxidation during exercise. Hingst JR; Kjøbsted R; Birk JB; Jørgensen NO; Larsen MR; Kido K; Larsen JK; Kjeldsen SAS; Fentz J; Frøsig C; Holm S; Fritzen AM; Dohlmann TL; Larsen S; Foretz M; Viollet B; Schjerling P; Overby P; Halling JF; Pilegaard H; Hellsten Y; Wojtaszewski JFP Mol Metab; 2020 Oct; 40():101028. PubMed ID: 32504885 [TBL] [Abstract][Full Text] [Related]
9. Genetic impairment of AMPKalpha2 signaling does not reduce muscle glucose uptake during treadmill exercise in mice. Maarbjerg SJ; Jørgensen SB; Rose AJ; Jeppesen J; Jensen TE; Treebak JT; Birk JB; Schjerling P; Wojtaszewski JF; Richter EA Am J Physiol Endocrinol Metab; 2009 Oct; 297(4):E924-34. PubMed ID: 19654283 [TBL] [Abstract][Full Text] [Related]
10. The recruitment of AMP-activated protein kinase to glycogen is regulated by autophosphorylation. Oligschlaeger Y; Miglianico M; Chanda D; Scholz R; Thali RF; Tuerk R; Stapleton DI; Gooley PR; Neumann D J Biol Chem; 2015 May; 290(18):11715-28. PubMed ID: 25792737 [TBL] [Abstract][Full Text] [Related]
11. Skeletal muscle AMP-activated protein kinase γ1(H151R) overexpression enhances whole body energy homeostasis and insulin sensitivity. Schönke M; Myers MG; Zierath JR; Björnholm M Am J Physiol Endocrinol Metab; 2015 Oct; 309(7):E679-90. PubMed ID: 26306597 [TBL] [Abstract][Full Text] [Related]
12. Adenosine monophosphate-activated protein kinase is elevated in human cachectic muscle and prevents cancer-induced metabolic dysfunction in mice. Raun SH; Ali MS; Han X; Henríquez-Olguín C; Pham TCP; Meneses-Valdés R; Knudsen JR; Willemsen ACH; Larsen S; Jensen TE; Langen R; Sylow L J Cachexia Sarcopenia Muscle; 2023 Aug; 14(4):1631-1647. PubMed ID: 37194385 [TBL] [Abstract][Full Text] [Related]
13. Energy sensing by the AMP-activated protein kinase and its effects on muscle metabolism. Hardie DG Proc Nutr Soc; 2011 Feb; 70(1):92-9. PubMed ID: 21067629 [TBL] [Abstract][Full Text] [Related]
14. The human AMPKγ3 R225W mutation negatively impacts site-1 nucleotide binding and does not enhance basal AMPKγ3-associated activity nor glycogen production in human or mouse skeletal muscle. Eskesen NO; Kjøbsted R; Birk JB; Henriksen NS; Andersen NR; Ringholm S; Pilegaard H; Wojtaszewski JFP Acta Physiol (Oxf); 2024 Oct; 240(10):e14213. PubMed ID: 39171449 [TBL] [Abstract][Full Text] [Related]
15. AMP-activated protein kinase (AMPK) beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. O'Neill HM; Maarbjerg SJ; Crane JD; Jeppesen J; Jørgensen SB; Schertzer JD; Shyroka O; Kiens B; van Denderen BJ; Tarnopolsky MA; Kemp BE; Richter EA; Steinberg GR Proc Natl Acad Sci U S A; 2011 Sep; 108(38):16092-7. PubMed ID: 21896769 [TBL] [Abstract][Full Text] [Related]
17. Determinants of oligosaccharide specificity of the carbohydrate-binding modules of AMP-activated protein kinase. Mobbs JI; Koay A; Di Paolo A; Bieri M; Petrie EJ; Gorman MA; Doughty L; Parker MW; Stapleton DI; Griffin MD; Gooley PR Biochem J; 2015 Jun; 468(2):245-57. PubMed ID: 25774984 [TBL] [Abstract][Full Text] [Related]
18. Gain-of-function R225W mutation in human AMPKgamma(3) causing increased glycogen and decreased triglyceride in skeletal muscle. Costford SR; Kavaslar N; Ahituv N; Chaudhry SN; Schackwitz WS; Dent R; Pennacchio LA; McPherson R; Harper ME PLoS One; 2007 Sep; 2(9):e903. PubMed ID: 17878938 [TBL] [Abstract][Full Text] [Related]
19. The 5'-AMP-activated protein kinase gamma3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. Barnes BR; Marklund S; Steiler TL; Walter M; Hjälm G; Amarger V; Mahlapuu M; Leng Y; Johansson C; Galuska D; Lindgren K; Abrink M; Stapleton D; Zierath JR; Andersson L J Biol Chem; 2004 Sep; 279(37):38441-7. PubMed ID: 15247217 [TBL] [Abstract][Full Text] [Related]