These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 32610294)

  • 1. Optimizing the neuron-electrode interface for chronic bioelectronic interfacing.
    Keogh C
    Neurosurg Focus; 2020 Jul; 49(1):E7. PubMed ID: 32610294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soft High-Resolution Neural Interfacing Probes: Materials and Design Approaches.
    Lee M; Shim HJ; Choi C; Kim DH
    Nano Lett; 2019 May; 19(5):2741-2749. PubMed ID: 31002760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can histology solve the riddle of the nonfunctioning electrode? Factors influencing the biocompatibility of brain machine interfaces.
    Linsmeier CE; Thelin J; Danielsen N
    Prog Brain Res; 2011; 194():181-9. PubMed ID: 21867803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioactive polymer-enabled conformal neural interface and its application strategies.
    Hu Z; Niu Q; Hsiao BS; Yao X; Zhang Y
    Mater Horiz; 2023 Mar; 10(3):808-828. PubMed ID: 36597872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Reconnecting the Hand and Arm with Brain (ReHAB) Commentary on "An Integrated Brain-Machine Interface Platform With Thousands of Channels".
    Kirsch RF; Ajiboye AB; Miller JP
    J Med Internet Res; 2019 Oct; 21(10):e16339. PubMed ID: 31674921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional hydrogel coatings on the surface of neural cuff electrode for improving electrode-nerve tissue interfaces.
    Heo DN; Song SJ; Kim HJ; Lee YJ; Ko WK; Lee SJ; Lee D; Park SJ; Zhang LG; Kang JY; Do SH; Lee SH; Kwon IK
    Acta Biomater; 2016 Jul; 39():25-33. PubMed ID: 27163406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant.
    Green RA; Lovell NH; Wallace GG; Poole-Warren LA
    Biomaterials; 2008; 29(24-25):3393-9. PubMed ID: 18501423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regenerative Electrode Interfaces for Neural Prostheses.
    Thompson CH; Zoratti MJ; Langhals NB; Purcell EK
    Tissue Eng Part B Rev; 2016 Apr; 22(2):125-35. PubMed ID: 26421660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro- and nanotechnology for neural electrode-tissue interfaces.
    Liu S; Zhao Y; Hao W; Zhang XD; Ming D
    Biosens Bioelectron; 2020 Dec; 170():112645. PubMed ID: 33010703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hollow ring-like flexible electrode architecture enabling subcellular multi-directional neural interfacing.
    Vajrala VS; Elkhoury K; Pautot S; Bergaud C; Maziz A
    Biosens Bioelectron; 2023 May; 227():115182. PubMed ID: 36870146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial transcriptomics at the brain-electrode interface in rat motor cortex and the relationship to recording quality.
    Whitsitt Q; Saxena A; Patel B; Evans BM; Hunt B; Purcell EK
    J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 38885679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological challenges for intracortical electrodes.
    Groothuis J; Ramsey NF; Ramakers GM; van der Plasse G
    Brain Stimul; 2014; 7(1):1-6. PubMed ID: 23941984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
    Patil AC; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):23-44. PubMed ID: 26753777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the Biocompatibility and Functionality of Neural Interface Devices with Silica Nanoparticles.
    Shi D; Narayanan S; Woeppel K; Cui XT
    Acc Chem Res; 2024 Jun; 57(12):1684-1695. PubMed ID: 38814586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-implant neural interface: new emphasis on the biological interface.
    Michelson NJ; Vazquez AL; Eles JR; Salatino JW; Purcell EK; Williams JJ; Cui XT; Kozai TDY
    J Neural Eng; 2018 Jun; 15(3):033001. PubMed ID: 29182149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural, Functional, and Genetic Changes Surrounding Electrodes Implanted in the Brain.
    Gupta B; Saxena A; Perillo ML; Wade-Kleyn LC; Thompson CH; Purcell EK
    Acc Chem Res; 2024 May; 57(9):1346-1359. PubMed ID: 38630432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage biasing, cyclic voltammetry, & electrical impedance spectroscopy for neural interfaces.
    Wilks SJ; Richner TJ; Brodnick SK; Kipke DR; Williams JC; Otto KJ
    J Vis Exp; 2012 Feb; (60):. PubMed ID: 22395095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully implantable neural recording and stimulation interfaces: Peripheral nerve interface applications.
    Deshmukh A; Brown L; Barbe MF; Braverman AS; Tiwari E; Hobson L; Shunmugam S; Armitage O; Hewage E; Ruggieri MR; Morizio J
    J Neurosci Methods; 2020 Mar; 333():108562. PubMed ID: 31862376
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 23.