These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32610488)

  • 1. Altered Surface Hydrophilicity on Copolymer Scaffolds Stimulate the Osteogenic Differentiation of Human Mesenchymal Stem Cells.
    Xing Z; Cai J; Sun Y; Cao M; Li Y; Xue Y; Finne-Wistrand A; Kamal M
    Polymers (Basel); 2020 Jun; 12(7):. PubMed ID: 32610488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant tuning of hydrophilicity of porous degradable copolymer scaffolds promotes cellular proliferation and enhances bone formation.
    Yassin MA; Leknes KN; Sun Y; Lie SA; Finne-Wistrand A; Mustafa K
    J Biomed Mater Res A; 2016 Aug; 104(8):2049-59. PubMed ID: 27086867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant as a critical factor when tuning the hydrophilicity in three-dimensional polyester-based scaffolds: impact of hydrophilicity on their mechanical properties and the cellular response of human osteoblast-like cells.
    Sun Y; Xing Z; Xue Y; Mustafa K; Finne-Wistrand A; Albertsson AC
    Biomacromolecules; 2014 Apr; 15(4):1259-68. PubMed ID: 24559372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyester copolymer scaffolds enhance expression of bone markers in osteoblast-like cells.
    Idris SB; Arvidson K; Plikk P; Ibrahim S; Finne-Wistrand A; Albertsson AC; Bolstad AI; Mustafa K
    J Biomed Mater Res A; 2010 Aug; 94(2):631-9. PubMed ID: 20205238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth and differentiation of bone marrow stromal cells on biodegradable polymer scaffolds: an in vitro study.
    Xue Y; Dånmark S; Xing Z; Arvidson K; Albertsson AC; Hellem S; Finne-Wistrand A; Mustafa K
    J Biomed Mater Res A; 2010 Dec; 95(4):1244-51. PubMed ID: 20939051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable polymer scaffolds loaded with low-dose BMP-2 stimulate periodontal ligament cell differentiation.
    Skodje A; Idris SB; Sun Y; Bartaula S; Mustafa K; Finne-Wistrand A; Wikesjö UM; Leknes KN
    J Biomed Mater Res A; 2015 Jun; 103(6):1991-8. PubMed ID: 25231842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Copolymer Scaffold Functionalized with Nanodiamond Particles Enhances Osteogenic Metabolic Activity and Bone Regeneration.
    Yassin MA; Mustafa K; Xing Z; Sun Y; Fasmer KE; Waag T; Krueger A; Steinmüller-Nethl D; Finne-Wistrand A; Leknes KN
    Macromol Biosci; 2017 Jun; 17(6):. PubMed ID: 28116858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological effects of functionalizing copolymer scaffolds with nanodiamond particles.
    Xing Z; Pedersen TO; Wu X; Xue Y; Sun Y; Finne-Wistrand A; Kloss FR; Waag T; Krueger A; Steinmüller-Nethl D; Mustafa K
    Tissue Eng Part A; 2013 Aug; 19(15-16):1783-91. PubMed ID: 23574424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global gene expression profile of osteoblast-like cells grown on polyester copolymer scaffolds.
    Idris SB; Bolstad AI; Ibrahim SO; Dånmark S; Finne-Wistrand A; Albertsson AC; Arvidson K; Mustafa K
    Tissue Eng Part A; 2011 Nov; 17(21-22):2817-31. PubMed ID: 21905880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proliferation and osteogenesis of immortalized bone marrow-derived mesenchymal stem cells in porous polylactic glycolic acid scaffolds under perfusion culture.
    Yang J; Cao C; Wang W; Tong X; Shi D; Wu F; Zheng Q; Guo C; Pan Z; Gao C; Wang J
    J Biomed Mater Res A; 2010 Mar; 92(3):817-29. PubMed ID: 19280635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of bioactive glass particles on osteogenic differentiation of adipose-derived mesenchymal stem cells seeded on lactide and caprolactone based scaffolds.
    Larrañaga A; Alonso-Varona A; Palomares T; Rubio-Azpeitia E; Aldazabal P; Martin FJ; Sarasua JR
    J Biomed Mater Res A; 2015 Dec; 103(12):3815-24. PubMed ID: 26074489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteogenic potential of human dental pulp stem cells cultured onto poly-ε-caprolactone/poly (rotaxane) scaffolds.
    Oliveira NK; Salles THC; Pedroni AC; Miguita L; D'Ávila MA; Marques MM; Deboni MCZ
    Dent Mater; 2019 Dec; 35(12):1740-1749. PubMed ID: 31543375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone regeneration from human mesenchymal stem cells on porous hydroxyapatite-PLGA-collagen bioactive polymer scaffolds.
    Bhuiyan DB; Middleton JC; Tannenbaum R; Wick TM
    Biomed Mater Eng; 2017; 28(6):671-685. PubMed ID: 29171970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold.
    Birhanu G; Akbari Javar H; Seyedjafari E; Zandi-Karimi A; Dusti Telgerd M
    Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1274-1281. PubMed ID: 28835133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization.
    Dånmark S; Finne-Wistrand A; Schander K; Hakkarainen M; Arvidson K; Mustafa K; Albertsson AC
    Acta Biomater; 2011 May; 7(5):2035-46. PubMed ID: 21316490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of endothelial cells on bone regeneration using poly(L-lactide-co-1,5-dioxepan-2-one) scaffolds.
    Xing Z; Xue Y; Dånmark S; Schander K; Ostvold S; Arvidson K; Hellem S; Finne-Wistrand A; Albertsson AC; Mustafa K
    J Biomed Mater Res A; 2011 Feb; 96(2):349-57. PubMed ID: 21171154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of micro- and macroporosity of bone tissue three-dimensional-poly(epsilon-caprolactone) scaffold on human mesenchymal stem cells invasion, proliferation, and differentiation in vitro.
    Salerno A; Guarnieri D; Iannone M; Zeppetelli S; Netti PA
    Tissue Eng Part A; 2010 Aug; 16(8):2661-73. PubMed ID: 20687813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications.
    Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Charbord P; Delorme B; Reis RL; Neves NM
    Biomacromolecules; 2009 Aug; 10(8):2067-73. PubMed ID: 19621927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.