These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32610652)

  • 21. Automatic diagnosis of fungal keratitis using data augmentation and image fusion with deep convolutional neural network.
    Liu Z; Cao Y; Li Y; Xiao X; Qiu Q; Yang M; Zhao Y; Cui L
    Comput Methods Programs Biomed; 2020 Apr; 187():105019. PubMed ID: 31421868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visualization Methods for Image Transformation Convolutional Neural Networks.
    Protas E; Bratti JD; Gaya JFO; Drews P; Botelho SSC
    IEEE Trans Neural Netw Learn Syst; 2019 Jul; 30(7):2231-2243. PubMed ID: 30561353
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accurate Prediction of Biological Assays with High-Throughput Microscopy Images and Convolutional Networks.
    Hofmarcher M; Rumetshofer E; Clevert DA; Hochreiter S; Klambauer G
    J Chem Inf Model; 2019 Mar; 59(3):1163-1171. PubMed ID: 30840449
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell counting tool parameters optimization approach for electroporation efficiency determination of attached cells in phase contrast images.
    Usaj M; Torkar D; Kanduser M; Miklavcic D
    J Microsc; 2011 Mar; 241(3):303-14. PubMed ID: 21118234
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fully-automatic defects classification and restoration for STM images.
    Fan XG; Wu Y; Zhi YL; Xia H; Wang X
    Micron; 2020 Mar; 130():102798. PubMed ID: 31884199
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automatic diagnostics of tuberculosis using convolutional neural networks analysis of MODS digital images.
    Lopez-Garnier S; Sheen P; Zimic M
    PLoS One; 2019; 14(2):e0212094. PubMed ID: 30811445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of deep convolutional neural networks in classification of protein subcellular localization with microscopy images.
    Xiao M; Shen X; Pan W
    Genet Epidemiol; 2019 Apr; 43(3):330-341. PubMed ID: 30614068
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GRUU-Net: Integrated convolutional and gated recurrent neural network for cell segmentation.
    Wollmann T; Gunkel M; Chung I; Erfle H; Rippe K; Rohr K
    Med Image Anal; 2019 Aug; 56():68-79. PubMed ID: 31200289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
    Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y
    Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automated assessment of breast cancer margin in optical coherence tomography images via pretrained convolutional neural network.
    Singla N; Dubey K; Srivastava V
    J Biophotonics; 2019 Mar; 12(3):e201800255. PubMed ID: 30318761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FISH and chips: automation of fluorescent dot counting in interphase cell nuclei.
    Netten H; Young IT; van Vliet LJ; Tanke HJ; Vroljik H; Sloos WC
    Cytometry; 1997 May; 28(1):1-10. PubMed ID: 9136750
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fully automated 3D segmentation and separation of multiple cervical vertebrae in CT images using a 2D convolutional neural network.
    Bae HJ; Hyun H; Byeon Y; Shin K; Cho Y; Song YJ; Yi S; Kuh SU; Yeom JS; Kim N
    Comput Methods Programs Biomed; 2020 Feb; 184():105119. PubMed ID: 31627152
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An iterative multi-path fully convolutional neural network for automatic cardiac segmentation in cine MR images.
    Ma Z; Wu X; Wang X; Song Q; Yin Y; Cao K; Wang Y; Zhou J
    Med Phys; 2019 Dec; 46(12):5652-5665. PubMed ID: 31605627
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Uncovering Ecological Patterns with Convolutional Neural Networks.
    Brodrick PG; Davies AB; Asner GP
    Trends Ecol Evol; 2019 Aug; 34(8):734-745. PubMed ID: 31078331
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of Hypertension, Diabetes, and Smoking on Age and Sex Prediction from Retinal Fundus Images.
    Kim YD; Noh KJ; Byun SJ; Lee S; Kim T; Sunwoo L; Lee KJ; Kang SH; Park KH; Park SJ
    Sci Rep; 2020 Mar; 10(1):4623. PubMed ID: 32165702
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated Counting of Cancer Cells by Ensembling Deep Features.
    Liu Q; Junker A; Murakami K; Hu P
    Cells; 2019 Sep; 8(9):. PubMed ID: 31480740
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of Convolutional Neural Networks for Automated Ulcer Detection in Wireless Capsule Endoscopy Images.
    Alaskar H; Hussain A; Al-Aseem N; Liatsis P; Al-Jumeily D
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30871162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated tool for the detection of cell nuclei in digital microscopic images: application to retinal images.
    Byun J; Verardo MR; Sumengen B; Lewis GP; Manjunath BS; Fisher SK
    Mol Vis; 2006 Aug; 12():949-60. PubMed ID: 16943767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-throughput label-free detection of DNA-to-RNA transcription inhibition using brightfield microscopy and deep neural networks.
    Sauvat A; Cerrato G; Humeau J; Leduc M; Kepp O; Kroemer G
    Comput Biol Med; 2021 Jun; 133():104371. PubMed ID: 33845268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.