These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32611022)

  • 1. High-resolution imaging of Rydberg atoms in optical lattices using an aspheric-lens objective in vacuum.
    Shen C; Chen C; Wu XL; Dong S; Cui Y; You L; Tey MK
    Rev Sci Instrum; 2020 Jun; 91(6):063202. PubMed ID: 32611022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An adaptable two-lens high-resolution objective for single-site resolved imaging of atoms in optical lattices.
    Gempel MW; Hartmann T; Schulze TA; Voges KK; Zenesini A; Ospelkaus S
    Rev Sci Instrum; 2019 May; 90(5):053201. PubMed ID: 31153293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High finesse bow-tie cavity for strong atom-photon coupling in Rydberg arrays.
    Chen YT; Szurek M; Hu B; de Hond J; Braverman B; Vuletic V
    Opt Express; 2022 Oct; 30(21):37426-37435. PubMed ID: 36258331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High numerical aperture (NA = 0.92) objective lens for imaging and addressing of cold atoms.
    Robens C; Brakhane S; Alt W; Kleißler F; Meschede D; Moon G; Ramola G; Alberti A
    Opt Lett; 2017 Mar; 42(6):1043-1046. PubMed ID: 28295087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic-film atom chip with 10 μm period lattices of microtraps for quantum information science with Rydberg atoms.
    Leung VY; Pijn DR; Schlatter H; Torralbo-Campo L; La Rooij AL; Mulder GB; Naber J; Soudijn ML; Tauschinsky A; Abarbanel C; Hadad B; Golan E; Folman R; Spreeuw RJ
    Rev Sci Instrum; 2014 May; 85(5):053102. PubMed ID: 24880348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonadiabatic motional effects and dissipative blockade for Rydberg atoms excited from optical lattices or microtraps.
    Li W; Ates C; Lesanovsky I
    Phys Rev Lett; 2013 May; 110(21):213005. PubMed ID: 23745868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-numerical-aperture and long-working-distance objective for single-atom experiments.
    Li S; Li G; Wu W; Fan Q; Tian Y; Yang P; Zhang P; Zhang T
    Rev Sci Instrum; 2020 Apr; 91(4):043104. PubMed ID: 32357718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Versatile objectives with NA = 0.55 and NA = 0.78 for cold-atom experiments.
    Li S; Li G; Yang P; Wang Z; Zhang P; Zhang T
    Opt Express; 2020 Nov; 28(24):36122-36130. PubMed ID: 33379714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A versatile apparatus for two-dimensional atomtronic quantum simulation.
    Haase TA; White DH; Brown DJ; Herrera I; Hoogerland MD
    Rev Sci Instrum; 2017 Nov; 88(11):113102. PubMed ID: 29195367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical imaging featuring both long working distance and high spatial resolution by correcting the aberration of a large aperture lens.
    Choi C; Song KD; Kang S; Park JS; Choi W
    Sci Rep; 2018 Jun; 8(1):9165. PubMed ID: 29907794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of Interactions between Trapped Ions and Ultracold Rydberg Atoms.
    Ewald NV; Feldker T; Hirzler H; Fürst HA; Gerritsma R
    Phys Rev Lett; 2019 Jun; 122(25):253401. PubMed ID: 31347879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution ex vacuo objective for cold atom experiments.
    Li X; Zhou F; Ke M; Xu P; He XD; Wang J; Zhan MS
    Appl Opt; 2018 Sep; 57(26):7584-7590. PubMed ID: 30461825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A versatile high resolution objective for imaging quantum gases.
    Bennie LM; Starkey PT; Jasperse M; Billington CJ; Anderson RP; Turner LD
    Opt Express; 2013 Apr; 21(7):9011-6. PubMed ID: 23571991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models.
    Labuhn H; Barredo D; Ravets S; de Léséleuc S; Macrì T; Lahaye T; Browaeys A
    Nature; 2016 Jun; 534(7609):667-70. PubMed ID: 27281203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rydberg rings.
    Olmos B; Lesanovsky I
    Phys Chem Chem Phys; 2011 Mar; 13(10):4208-19. PubMed ID: 21279207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electric-field induced dipole blockade with Rydberg atoms.
    Vogt T; Viteau M; Chotia A; Zhao J; Comparat D; Pillet P
    Phys Rev Lett; 2007 Aug; 99(7):073002. PubMed ID: 17930892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction enhanced imaging of individual Rydberg atoms in dense gases.
    Günter G; Robert-de-Saint-Vincent M; Schempp H; Hofmann CS; Whitlock S; Weidemüller M
    Phys Rev Lett; 2012 Jan; 108(1):013002. PubMed ID: 22304259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging interferometric microscopy-approaching the linear systems limits of optical resolution.
    Kuznetsova Y; Neumann A; Brueck SR
    Opt Express; 2007 May; 15(11):6651-63. PubMed ID: 19546975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Method to Study Ion-Molecule Reactions at Low Temperatures and Application to the H2++H2→H3++H Reaction.
    Allmendinger P; Deiglmayr J; Schullian O; Höveler K; Agner JA; Schmutz H; Merkt F
    Chemphyschem; 2016 Nov; 17(22):3596-3608. PubMed ID: 27860125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rydberg Molecule-Induced Remote Spin Flips.
    Niederprüm T; Thomas O; Eichert T; Ott H
    Phys Rev Lett; 2016 Sep; 117(12):123002. PubMed ID: 27689268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.