BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32611040)

  • 1. Collection of micromirror-modulated light in the single-pixel broadband hyperspectral microscope.
    Klein L; Žídek K
    Rev Sci Instrum; 2020 Jun; 91(6):063701. PubMed ID: 32611040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffraction-limited hyperspectral mid-infrared single-pixel microscopy.
    Ebner A; Gattinger P; Zorin I; Krainer L; Rankl C; Brandstetter M
    Sci Rep; 2023 Jan; 13(1):281. PubMed ID: 36609672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hadamard transform-based hyperspectral imaging using a single-pixel detector.
    Yi Q; Heng LZ; Liang L; Guangcan Z; Siong CF; Guangya Z
    Opt Express; 2020 May; 28(11):16126-16139. PubMed ID: 32549441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband near-infrared hyperspectral single pixel imaging for chemical characterization.
    Gattinger P; Kilgus J; Zorin I; Langer G; Nikzad-Langerodi R; Rankl C; Gröschl M; Brandstetter M
    Opt Express; 2019 Apr; 27(9):12666-12672. PubMed ID: 31052805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging.
    Pian Q; Yao R; Sinsuebphon N; Intes X
    Nat Photonics; 2017; 11():411-414. PubMed ID: 29242714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compressed sensing hyperspectral imaging in the 0.9-2.5  μm shortwave infrared wavelength range using a digital micromirror device and InGaAs linear array detector.
    Arnob MMP; Nguyen H; Han Z; Shih WC
    Appl Opt; 2018 Jun; 57(18):5019-5024. PubMed ID: 30117961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study on the Design of Prism Hyperspectral Imaging System Based on Off-Axis Two-Mirror Littrow Configuration].
    Yang J; Cui JC; Bayanheshig ; Qi XD; Tang YG; Yao XF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 May; 36(5):1537-42. PubMed ID: 30001059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate pixel-to-pixel correspondence adjustment in a digital micromirror device camera by using the phase-shifting moiré method.
    Ri S; Fujigaki M; Matui T; Morimoto Y
    Appl Opt; 2006 Sep; 45(27):6940-6. PubMed ID: 16946769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatially encoded hyperspectral compressive microscope for ultrabroadband VIS/NIR hyperspectral imaging.
    Klein L; Touš J; Žídek K
    Appl Opt; 2023 May; 62(15):4030-4039. PubMed ID: 37706714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational hyperspectral light-sheet microscopy.
    Crombez S; Leclerc P; Ray C; Ducros N
    Opt Express; 2022 Feb; 30(4):4856-4866. PubMed ID: 35209458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lensless Photoluminescence Hyperspectral Camera Employing Random Speckle Patterns.
    Žídek K; Denk O; Hlubuček J
    Sci Rep; 2017 Nov; 7(1):15309. PubMed ID: 29127311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active DLP hyperspectral illumination: a noninvasive, in vivo, system characterization visualizing tissue oxygenation at near video rates.
    Zuzak KJ; Francis RP; Wehner EF; Litorja M; Cadeddu JA; Livingston EH
    Anal Chem; 2011 Oct; 83(19):7424-30. PubMed ID: 21842837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy-efficient dispersion compensation for digital micromirror device.
    Liu L; Zhang Y; Chen J; He Q; Shen Y; Qu Y; Yang J
    Opt Express; 2024 Apr; 32(8):13946-13954. PubMed ID: 38859352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital micromirror device camera with per-pixel coded exposure for high dynamic range imaging.
    Feng W; Zhang F; Wang W; Xing W; Qu X
    Appl Opt; 2017 May; 56(13):3831-3840. PubMed ID: 28463276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum dot-enabled infrared hyperspectral imaging with single-pixel detection.
    Meng H; Gao Y; Wang X; Li X; Wang L; Zhao X; Sun B
    Light Sci Appl; 2024 May; 13(1):121. PubMed ID: 38802359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mobile snapshot hyperspectral imaging device for skin evaluation using diffractive optical elements.
    Kern C; Speck U; Riesenberg R; Reble C; Khazaka G; Zieger M; Kaatz M; De Gregorio M; Fischer F
    Skin Res Technol; 2021 Jul; 27(4):589-598. PubMed ID: 33511672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ACTIVE-EYES: an adaptive pixel-by-pixel image-segmentation sensor architecture for high-dynamic-range hyperspectral imaging.
    Christensen MP; Euliss GW; McFadden MJ; Coyle KM; Milojkovic P; Haney MW; van der Gracht J; Athale RA
    Appl Opt; 2002 Oct; 41(29):6093-103. PubMed ID: 12389978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-DMD hyperspectral spatial frequency domain imaging (SFDI) using dispersed broadband illumination with a demonstration of blood stain spectral monitoring.
    Applegate MB; Spink SS; Roblyer D
    Biomed Opt Express; 2021 Jan; 12(1):676-688. PubMed ID: 33520393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffraction of digital micromirror device gratings and its effect on properties of tunable fiber lasers.
    Chen X; Yan BB; Song FJ; Wang YQ; Xiao F; Alameh K
    Appl Opt; 2012 Oct; 51(30):7214-20. PubMed ID: 23089774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational spectrometer based on a broadband diffractive optic.
    Wang P; Menon R
    Opt Express; 2014 Jun; 22(12):14575-87. PubMed ID: 24977553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.