BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32611065)

  • 1. Probing plasma-treated graphene using hyperspectral Raman.
    Robert Bigras G; Vinchon P; Allard C; Glad X; Martel R; Stafford L
    Rev Sci Instrum; 2020 Jun; 91(6):063903. PubMed ID: 32611065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preferential self-healing at grain boundaries in plasma-treated graphene.
    Vinchon P; Glad X; Robert Bigras G; Martel R; Stafford L
    Nat Mater; 2021 Jan; 20(1):49-54. PubMed ID: 32690911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and characterization of a handheld hyperspectral Raman imaging probe system for molecular characterization of tissue on mesoscopic scales.
    St-Arnaud K; Aubertin K; Strupler M; Madore WJ; Grosset AA; Petrecca K; Trudel D; Leblond F
    Med Phys; 2018 Jan; 45(1):328-339. PubMed ID: 29106741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman spectroscopic investigation of polycrystalline structures of CVD-grown graphene by isotope labeling.
    Wang S; Suzuki S; Hibino H
    Nanoscale; 2014 Nov; 6(22):13838-44. PubMed ID: 25303722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing Graphene Interfacial Reactivity via Simultaneous and Colocalized Raman-Scanning Electrochemical Microscopy Imaging and Interrogation.
    Schorr NB; Jiang AG; Rodríguez-López J
    Anal Chem; 2018 Jul; 90(13):7848-7854. PubMed ID: 29701059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient quantitative hyperspectral image unmixing method for large-scale Raman micro-spectroscopy data analysis.
    Lobanova EG; Lobanov SV
    Anal Chim Acta; 2019 Mar; 1050():32-43. PubMed ID: 30661589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polycrystallinity and stacking in CVD graphene.
    Tsen AW; Brown L; Havener RW; Park J
    Acc Chem Res; 2013 Oct; 46(10):2286-96. PubMed ID: 23135386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperspectral Raman Imaging Using a Spatial Heterodyne Raman Spectrometer with a Microlens Array.
    Allen A; Waldron A; Ottaway JM; Chance Carter J; Michael Angel S
    Appl Spectrosc; 2020 Aug; 74(8):921-931. PubMed ID: 32031013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering.
    Feng S; Dos Santos MC; Carvalho BR; Lv R; Li Q; Fujisawa K; Elías AL; Lei Y; Perea-López N; Endo M; Pan M; Pimenta MA; Terrones M
    Sci Adv; 2016 Jul; 2(7):e1600322. PubMed ID: 27532043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy for Probing Riboflavin on Graphene.
    Zdaniauskienė A; Ignatjev I; Charkova T; Talaikis M; Lukša A; Šetkus A; Niaura G
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct observation of grain boundaries in graphene through vapor hydrofluoric acid (VHF) exposure.
    Fan X; Wagner S; Schädlich P; Speck F; Kataria S; Haraldsson T; Seyller T; Lemme MC; Niklaus F
    Sci Adv; 2018 May; 4(5):eaar5170. PubMed ID: 29806026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatially resolved Raman spectroscopy of defects, strains, and strain fluctuations in domain structures of monolayer graphene.
    Lee T; Mas'ud FA; Kim MJ; Rho H
    Sci Rep; 2017 Nov; 7(1):16681. PubMed ID: 29192151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Modification of Single-Layer Graphene Under Laser Irradiation Featured by Micro-Raman Spectroscopy.
    Stubrov Y; Nikolenko A; Strelchuk V; Nedilko S; Chornii V
    Nanoscale Res Lett; 2017 Dec; 12(1):297. PubMed ID: 28446000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput graphene imaging on arbitrary substrates with widefield Raman spectroscopy.
    Havener RW; Ju SY; Brown L; Wang Z; Wojcik M; Ruiz-Vargas CS; Park J
    ACS Nano; 2012 Jan; 6(1):373-80. PubMed ID: 22206260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides.
    Pimenta MA; Del Corro E; Carvalho BR; Fantini C; Malard LM
    Acc Chem Res; 2015 Jan; 48(1):41-7. PubMed ID: 25490518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes.
    Wu W; Yu Q; Peng P; Liu Z; Bao J; Pei SS
    Nanotechnology; 2012 Jan; 23(3):035603. PubMed ID: 22173552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing Bilayer Grain Boundaries in Large-Area Graphene with Tip-Enhanced Raman Spectroscopy.
    Park KD; Raschke MB; Atkin JM; Lee YH; Jeong MS
    Adv Mater; 2017 Feb; 29(7):. PubMed ID: 27935201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique synthesis of few-layer graphene films on carbon-doped Pt(83)Rh(17) surfaces.
    Gao JH; Fujita D; Xu MS; Onishi K; Miyamoto S
    ACS Nano; 2010 Feb; 4(2):1026-32. PubMed ID: 20104857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale chemical imaging of single-layer graphene.
    Stadler J; Schmid T; Zenobi R
    ACS Nano; 2011 Oct; 5(10):8442-8. PubMed ID: 21957895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the nature of defects in graphene by Raman spectroscopy.
    Eckmann A; Felten A; Mishchenko A; Britnell L; Krupke R; Novoselov KS; Casiraghi C
    Nano Lett; 2012 Aug; 12(8):3925-30. PubMed ID: 22764888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.