These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 32611071)

  • 1. Trapping of swimmers in a vortex lattice.
    Berman SA; Mitchell KA
    Chaos; 2020 Jun; 30(6):063121. PubMed ID: 32611071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ballistic to diffusive transition for swimmers in a periodic vortex array.
    Whitney TJ; Mitchell KA
    Phys Rev E; 2024 Sep; 110(3-1):034203. PubMed ID: 39425404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disentangling the functional roles of morphology and motion in the swimming of fish.
    Tytell ED; Borazjani I; Sotiropoulos F; Baker TV; Anderson EJ; Lauder GV
    Integr Comp Biol; 2010 Dec; 50(6):1140-54. PubMed ID: 21082068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.
    Li N; Liu H; Su Y
    PLoS One; 2017; 12(3):e0174740. PubMed ID: 28362836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2010 Jan; 213(1):89-107. PubMed ID: 20008366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady hydrodynamic interaction between human swimmers.
    Yuan ZM; Li M; Ji CY; Li L; Jia L; Incecik A
    J R Soc Interface; 2019 Jan; 16(150):20180768. PubMed ID: 30958151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hydrodynamic advantages of synchronized swimming in a rectangular pattern.
    Daghooghi M; Borazjani I
    Bioinspir Biomim; 2015 Oct; 10(5):056018. PubMed ID: 26447493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronisation through learning for two self-propelled swimmers.
    Novati G; Verma S; Alexeev D; Rossinelli D; van Rees WM; Koumoutsakos P
    Bioinspir Biomim; 2017 Mar; 12(3):036001. PubMed ID: 28355166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of a squid-inspired swimmer in free swimming.
    Bi X; Zhu Q
    Bioinspir Biomim; 2019 Dec; 15(1):016005. PubMed ID: 31726438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confinement, chaotic transport, and trapping of active swimmers in time-periodic flows.
    Qin B; Arratia PE
    Sci Adv; 2022 Dec; 8(49):eadd6196. PubMed ID: 36475804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The most efficient metazoan swimmer creates a 'virtual wall' to enhance performance.
    Gemmell BJ; Du Clos KT; Colin SP; Sutherland KR; Costello JH
    Proc Biol Sci; 2021 Jan; 288(1942):20202494. PubMed ID: 33402068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient shapes for microswimming: From three-body swimmers to helical flagella.
    Bet B; Boosten G; Dijkstra M; van Roij R
    J Chem Phys; 2017 Feb; 146(8):084904. PubMed ID: 28249423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced locomotion, effective diffusion and trapping of undulatory micro-swimmers in heterogeneous environments.
    Kamal A; Keaveny EE
    J R Soc Interface; 2018 Nov; 15(148):. PubMed ID: 30487240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring the 3D wake of swimming snakes (Natrix tessellata) using volumetric particle image velocimetry.
    Stin V; Godoy-Diana R; Bonnet X; Herrel A
    J Exp Biol; 2023 Jul; 226(13):. PubMed ID: 37306032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational modeling of swimming in marine invertebrates with implications for soft swimming robots.
    Zhou Z; Mittal R
    Bioinspir Biomim; 2020 Jun; 15(4):046010. PubMed ID: 32320957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity-induced clustering in model dumbbell swimmers: the role of hydrodynamic interactions.
    Furukawa A; Marenduzzo D; Cates ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022303. PubMed ID: 25215734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2009 Feb; 212(Pt 4):576-92. PubMed ID: 19181905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer.
    Peng J; Alben S
    Bioinspir Biomim; 2012 Mar; 7(1):016012. PubMed ID: 22345408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient collective swimming by harnessing vortices through deep reinforcement learning.
    Verma S; Novati G; Koumoutsakos P
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):5849-5854. PubMed ID: 29784820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamics of a Flexible Soft-Rayed Caudal Fin.
    Iosilevskii G
    PLoS One; 2016; 11(10):e0163517. PubMed ID: 27695043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.