These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 32611082)
1. Erratum: "Effects of synaptic and myelin plasticity on learning in a network of Kuramoto phase oscillators" [Chaos 29, 083122 (2019)]. Karimian M; Dibenedetto D; Moerel M; Burwick T; Westra RL; De Weerd P; Senden M Chaos; 2020 Jun; 30(6):069902. PubMed ID: 32611082 [No Abstract] [Full Text] [Related]
2. Effects of synaptic and myelin plasticity on learning in a network of Kuramoto phase oscillators. Karimian M; Dibenedetto D; Moerel M; Burwick T; Westra RL; De Weerd P; Senden M Chaos; 2019 Aug; 29(8):083122. PubMed ID: 31472483 [TBL] [Abstract][Full Text] [Related]
3. Phase chaos in coupled oscillators. Popovych OV; Maistrenko YL; Tass PA Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):065201. PubMed ID: 16089804 [TBL] [Abstract][Full Text] [Related]
4. Synchronization in phase-coupled Kuramoto oscillator networks with axonal delay and synaptic plasticity. Timms L; English LQ Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032906. PubMed ID: 24730912 [TBL] [Abstract][Full Text] [Related]
6. Plasticity and learning in a network of coupled phase oscillators. Seliger P; Young SC; Tsimring LS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041906. PubMed ID: 12005872 [TBL] [Abstract][Full Text] [Related]
7. Frequency assortativity can induce chaos in oscillator networks. Skardal PS; Restrepo JG; Ott E Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):060902. PubMed ID: 26172652 [TBL] [Abstract][Full Text] [Related]
8. Chaos in networks of coupled oscillators with multimodal natural frequency distributions. Smith LD; Gottwald GA Chaos; 2019 Sep; 29(9):093127. PubMed ID: 31575123 [TBL] [Abstract][Full Text] [Related]
9. Publisher Correction: Multistability in a star network of Kuramoto-type oscillators with synaptic plasticity. Ratas I; Pyragas K; Tass PA Sci Rep; 2021 Sep; 11(1):18603. PubMed ID: 34521996 [No Abstract] [Full Text] [Related]
10. Chaos in generically coupled phase oscillator networks with nonpairwise interactions. Bick C; Ashwin P; Rodrigues A Chaos; 2016 Sep; 26(9):094814. PubMed ID: 27781441 [TBL] [Abstract][Full Text] [Related]
11. Optimal synchronization of Kuramoto oscillators: A dimensional reduction approach. Pinto RS; Saa A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062801. PubMed ID: 26764738 [TBL] [Abstract][Full Text] [Related]
12. Configurational stability for the Kuramoto-Sakaguchi model. Bronski JC; Carty T; DeVille L Chaos; 2018 Oct; 28(10):103109. PubMed ID: 30384636 [TBL] [Abstract][Full Text] [Related]
13. Synchronous harmony in an ensemble of Hamiltonian mean-field oscillators and inertial Kuramoto oscillators. Ha SY; Lee J; Li Z Chaos; 2018 Nov; 28(11):113112. PubMed ID: 30501218 [TBL] [Abstract][Full Text] [Related]
14. Perceptual grouping by entrainment in coupled Kuramoto oscillator networks. Meier M; Haschke R; Ritter HJ Network; 2014; 25(1-2):72-84. PubMed ID: 24571099 [TBL] [Abstract][Full Text] [Related]
15. Repulsively coupled Kuramoto-Sakaguchi phase oscillators ensemble subject to common noise. Gong CC; Zheng C; Toenjes R; Pikovsky A Chaos; 2019 Mar; 29(3):033127. PubMed ID: 30927833 [TBL] [Abstract][Full Text] [Related]
16. Perturbation analysis of complete synchronization in networks of phase oscillators. Tönjes R; Blasius B Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026202. PubMed ID: 19792226 [TBL] [Abstract][Full Text] [Related]
17. The dynamics of network coupled phase oscillators: an ensemble approach. Barlev G; Antonsen TM; Ott E Chaos; 2011 Jun; 21(2):025103. PubMed ID: 21721781 [TBL] [Abstract][Full Text] [Related]
18. Microscopic correlations in the finite-size Kuramoto model of coupled oscillators. Peter F; Gong CC; Pikovsky A Phys Rev E; 2019 Sep; 100(3-1):032210. PubMed ID: 31639966 [TBL] [Abstract][Full Text] [Related]
19. Multistability of twisted states in non-locally coupled Kuramoto-type models. Girnyk T; Hasler M; Maistrenko Y Chaos; 2012 Mar; 22(1):013114. PubMed ID: 22462990 [TBL] [Abstract][Full Text] [Related]
20. Synaptic organizations and dynamical properties of weakly connected neural oscillators. II. Learning phase information. Hoppensteadt FC; Izhikevich EM Biol Cybern; 1996 Aug; 75(2):129-35. PubMed ID: 8855351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]