These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 32611082)

  • 21. From the Kuramoto-Sakaguchi model to the Kuramoto-Sivashinsky equation.
    Kawamura Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):010901. PubMed ID: 24580159
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental study of synchronization of coupled electrical self-oscillators and comparison to the Sakaguchi-Kuramoto model.
    English LQ; Zeng Z; Mertens D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052912. PubMed ID: 26651767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Entraining the topology and the dynamics of a network of phase oscillators.
    Sendiña-Nadal I; Leyva I; Buldú JM; Almendral JA; Boccaletti S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046105. PubMed ID: 19518299
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Erratum: "Extreme synchronization events in a Kuramoto model: The interplay between resource constraints and explosive transitions" [Chaos 31, 063103 (2021)].
    Frolov N; Hramov A
    Chaos; 2021 Dec; 31(12):129901. PubMed ID: 34972320
    [No Abstract]   [Full Text] [Related]  

  • 25. Synchronization Conditions for a Multirate Kuramoto Network With an Arbitrary Topology and Nonidentical Oscillators.
    Wu L; Pota HR; Petersen IR
    IEEE Trans Cybern; 2019 Jun; 49(6):2242-2254. PubMed ID: 29993946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Linear reformulation of the Kuramoto model of self-synchronizing coupled oscillators.
    Roberts DC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031114. PubMed ID: 18517336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Model reduction for Kuramoto models with complex topologies.
    Hancock EJ; Gottwald GA
    Phys Rev E; 2018 Jul; 98(1-1):012307. PubMed ID: 30110852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators.
    Hong H; Strogatz SH
    Phys Rev Lett; 2011 Feb; 106(5):054102. PubMed ID: 21405399
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On synchronization in power-grids modelled as networks of second-order Kuramoto oscillators.
    Grzybowski JM; Macau EE; Yoneyama T
    Chaos; 2016 Nov; 26(11):113113. PubMed ID: 27908000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vortices and the entrainment transition in the two-dimensional Kuramoto model.
    Lee TE; Tam H; Refael G; Rogers JL; Cross MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036202. PubMed ID: 21230156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimal global synchronization of partially forced Kuramoto oscillators.
    Climaco JS; Saa A
    Chaos; 2019 Jul; 29(7):073115. PubMed ID: 31370401
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stochastic Kuramoto oscillators with discrete phase states.
    Jörg DJ
    Phys Rev E; 2017 Sep; 96(3-1):032201. PubMed ID: 29346898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Classification of attractors for systems of identical coupled Kuramoto oscillators.
    Engelbrecht JR; Mirollo R
    Chaos; 2014 Mar; 24(1):013114. PubMed ID: 24697376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kuramoto dynamics in Hamiltonian systems.
    Witthaut D; Timme M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032917. PubMed ID: 25314514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The stability of fixed points for a Kuramoto model with Hebbian interactions.
    Bronski JC; He Y; Li X; Liu Y; Sponseller DR; Wolbert S
    Chaos; 2017 May; 27(5):053110. PubMed ID: 28576101
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Connecting the Kuramoto Model and the Chimera State.
    Kotwal T; Jiang X; Abrams DM
    Phys Rev Lett; 2017 Dec; 119(26):264101. PubMed ID: 29328734
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of assortative mixing in the second-order Kuramoto model.
    Peron TK; Ji P; Rodrigues FA; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052805. PubMed ID: 26066210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Collective phase chaos in the dynamics of interacting oscillator ensembles.
    Kuznetsov SP; Pikovsky A; Rosenblum M
    Chaos; 2010 Dec; 20(4):043134. PubMed ID: 21198104
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bifurcations in the Kuramoto model on graphs.
    Chiba H; Medvedev GS; Mizuhara MS
    Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Directed acyclic decomposition of Kuramoto equations.
    Chen T
    Chaos; 2019 Sep; 29(9):093101. PubMed ID: 31575119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.