These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32611124)

  • 1. Contrasting chaotic with stochastic dynamics via ordinal transition networks.
    Olivares F; Zanin M; Zunino L; Pérez DG
    Chaos; 2020 Jun; 30(6):063101. PubMed ID: 32611124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing stochastic time series with ordinal networks.
    Pessa AAB; Ribeiro HV
    Phys Rev E; 2019 Oct; 100(4-1):042304. PubMed ID: 31770975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics.
    Olivares F; Zunino L; Soriano MC; Pérez DG
    Phys Rev E; 2019 Oct; 100(4-1):042215. PubMed ID: 31770914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discriminating chaotic and stochastic time series using permutation entropy and artificial neural networks.
    Boaretto BRR; Budzinski RC; Rossi KL; Prado TL; Lopes SR; Masoller C
    Sci Rep; 2021 Aug; 11(1):15789. PubMed ID: 34349134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating topological entropy using ordinal partition networks.
    Sakellariou K; Stemler T; Small M
    Phys Rev E; 2021 Feb; 103(2-1):022214. PubMed ID: 33736019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discriminating chaotic and stochastic dynamics through the permutation spectrum test.
    Kulp CW; Zunino L
    Chaos; 2014 Sep; 24(3):033116. PubMed ID: 25273196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach.
    Zunino L; Soriano MC; Rosso OA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046210. PubMed ID: 23214666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ordinal pattern-based complexity analysis of high-dimensional chaotic time series.
    Kottlarz I; Parlitz U
    Chaos; 2023 May; 33(5):. PubMed ID: 37133925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is human atrial fibrillation stochastic or deterministic?-Insights from missing ordinal patterns and causal entropy-complexity plane analysis.
    Aronis KN; Berger RD; Calkins H; Chrispin J; Marine JE; Spragg DD; Tao S; Tandri H; Ashikaga H
    Chaos; 2018 Jun; 28(6):063130. PubMed ID: 29960392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing dynamical transitions by statistical complexity measures based on ordinal pattern transition networks.
    Huang M; Sun Z; Donner RV; Zhang J; Guan S; Zou Y
    Chaos; 2021 Mar; 31(3):033127. PubMed ID: 33810737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Markov modeling via ordinal partitions: An alternative paradigm for network-based time-series analysis.
    Sakellariou K; Stemler T; Small M
    Phys Rev E; 2019 Dec; 100(6-1):062307. PubMed ID: 31962534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing ordinal partition transition networks from multivariate time series.
    Zhang J; Zhou J; Tang M; Guo H; Small M; Zou Y
    Sci Rep; 2017 Aug; 7(1):7795. PubMed ID: 28798326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized weighted permutation entropy.
    Stosic D; Stosic D; Stosic T; Stosic B
    Chaos; 2022 Oct; 32(10):103105. PubMed ID: 36319309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximum entropy principle in recurrence plot analysis on stochastic and chaotic systems.
    Prado TL; Corso G; Dos Santos Lima GZ; Budzinski RC; Boaretto BRR; Ferrari FAS; Macau EEN; Lopes SR
    Chaos; 2020 Apr; 30(4):043123. PubMed ID: 32357677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ordpy: A Python package for data analysis with permutation entropy and ordinal network methods.
    Pessa AAB; Ribeiro HV
    Chaos; 2021 Jun; 31(6):063110. PubMed ID: 34241315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ordinal partition transition network based complexity measures for inferring coupling direction and delay from time series.
    Ruan Y; Donner RV; Guan S; Zou Y
    Chaos; 2019 Apr; 29(4):043111. PubMed ID: 31042940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-Delay Identification Using Multiscale Ordinal Quantifiers.
    Soriano MC; Zunino L
    Entropy (Basel); 2021 Jul; 23(8):. PubMed ID: 34441109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permutation Entropy of Weakly Noise-Affected Signals.
    Ricci L; Politi A
    Entropy (Basel); 2021 Dec; 24(1):. PubMed ID: 35052080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing Complex Dynamics in the Classical and Semi-Classical Duffing Oscillator Using Ordinal Patterns Analysis.
    Trostel ML; Misplon MZR; Aragoneses A; Pattanayak AK
    Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators.
    Xu K; Maidana JP; Castro S; Orio P
    Sci Rep; 2018 May; 8(1):8370. PubMed ID: 29849108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.