These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 32611124)
1. Contrasting chaotic with stochastic dynamics via ordinal transition networks. Olivares F; Zanin M; Zunino L; Pérez DG Chaos; 2020 Jun; 30(6):063101. PubMed ID: 32611124 [TBL] [Abstract][Full Text] [Related]
2. Characterizing stochastic time series with ordinal networks. Pessa AAB; Ribeiro HV Phys Rev E; 2019 Oct; 100(4-1):042304. PubMed ID: 31770975 [TBL] [Abstract][Full Text] [Related]
3. Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics. Olivares F; Zunino L; Soriano MC; Pérez DG Phys Rev E; 2019 Oct; 100(4-1):042215. PubMed ID: 31770914 [TBL] [Abstract][Full Text] [Related]
4. Unveiling the Connectivity of Complex Networks Using Ordinal Transition Methods. Almendral JA; Leyva I; Sendiña-Nadal I Entropy (Basel); 2023 Jul; 25(7):. PubMed ID: 37510026 [TBL] [Abstract][Full Text] [Related]
5. Discriminating chaotic and stochastic time series using permutation entropy and artificial neural networks. Boaretto BRR; Budzinski RC; Rossi KL; Prado TL; Lopes SR; Masoller C Sci Rep; 2021 Aug; 11(1):15789. PubMed ID: 34349134 [TBL] [Abstract][Full Text] [Related]
6. Estimating topological entropy using ordinal partition networks. Sakellariou K; Stemler T; Small M Phys Rev E; 2021 Feb; 103(2-1):022214. PubMed ID: 33736019 [TBL] [Abstract][Full Text] [Related]
7. Discriminating chaotic and stochastic dynamics through the permutation spectrum test. Kulp CW; Zunino L Chaos; 2014 Sep; 24(3):033116. PubMed ID: 25273196 [TBL] [Abstract][Full Text] [Related]
8. Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach. Zunino L; Soriano MC; Rosso OA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046210. PubMed ID: 23214666 [TBL] [Abstract][Full Text] [Related]
9. Ordinal pattern-based complexity analysis of high-dimensional chaotic time series. Kottlarz I; Parlitz U Chaos; 2023 May; 33(5):. PubMed ID: 37133925 [TBL] [Abstract][Full Text] [Related]
10. Is human atrial fibrillation stochastic or deterministic?-Insights from missing ordinal patterns and causal entropy-complexity plane analysis. Aronis KN; Berger RD; Calkins H; Chrispin J; Marine JE; Spragg DD; Tao S; Tandri H; Ashikaga H Chaos; 2018 Jun; 28(6):063130. PubMed ID: 29960392 [TBL] [Abstract][Full Text] [Related]
11. Characterizing dynamical transitions by statistical complexity measures based on ordinal pattern transition networks. Huang M; Sun Z; Donner RV; Zhang J; Guan S; Zou Y Chaos; 2021 Mar; 31(3):033127. PubMed ID: 33810737 [TBL] [Abstract][Full Text] [Related]
12. Markov modeling via ordinal partitions: An alternative paradigm for network-based time-series analysis. Sakellariou K; Stemler T; Small M Phys Rev E; 2019 Dec; 100(6-1):062307. PubMed ID: 31962534 [TBL] [Abstract][Full Text] [Related]
13. Quantifying the diversity of multiple time series with an ordinal symbolic approach. Zunino L; Soriano MC Phys Rev E; 2023 Dec; 108(6-2):065302. PubMed ID: 38243479 [TBL] [Abstract][Full Text] [Related]
15. Maximum entropy principle in recurrence plot analysis on stochastic and chaotic systems. Prado TL; Corso G; Dos Santos Lima GZ; Budzinski RC; Boaretto BRR; Ferrari FAS; Macau EEN; Lopes SR Chaos; 2020 Apr; 30(4):043123. PubMed ID: 32357677 [TBL] [Abstract][Full Text] [Related]
16. ordpy: A Python package for data analysis with permutation entropy and ordinal network methods. Pessa AAB; Ribeiro HV Chaos; 2021 Jun; 31(6):063110. PubMed ID: 34241315 [TBL] [Abstract][Full Text] [Related]
17. Ordinal partition transition network based complexity measures for inferring coupling direction and delay from time series. Ruan Y; Donner RV; Guan S; Zou Y Chaos; 2019 Apr; 29(4):043111. PubMed ID: 31042940 [TBL] [Abstract][Full Text] [Related]