These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 32611124)
21. Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems. McCullough M; Small M; Stemler T; Iu HH Chaos; 2015 May; 25(5):053101. PubMed ID: 26026313 [TBL] [Abstract][Full Text] [Related]
22. Simplicial complex entropy for time series analysis. Guzmán-Vargas L; Zabaleta-Ortega A; Guzmán-Sáenz A Sci Rep; 2023 Dec; 13(1):22696. PubMed ID: 38123652 [TBL] [Abstract][Full Text] [Related]
23. Insights on correlation dimension from dynamics mapping of three experimental nonlinear laser systems. McMahon CJ; Toomey JP; Kane DM PLoS One; 2017; 12(8):e0181559. PubMed ID: 28837602 [TBL] [Abstract][Full Text] [Related]
24. Criteria for stochastic pinning control of networks of chaotic maps. Mwaffo V; DeLellis P; Porfiri M Chaos; 2014 Mar; 24(1):013101. PubMed ID: 24697363 [TBL] [Abstract][Full Text] [Related]
25. A new network representation for time series analysis from the perspective of combinatorial property of ordinal patterns. Lu Y; Yao L; Li H; Kausar T; Zhang Z; Gao P; Wang M Heliyon; 2023 Nov; 9(11):e22455. PubMed ID: 38034738 [TBL] [Abstract][Full Text] [Related]
26. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry]. Pezard L; Nandrino JL Encephale; 2001; 27(3):260-8. PubMed ID: 11488256 [TBL] [Abstract][Full Text] [Related]
27. Distinguishing noise from chaos. Rosso OA; Larrondo HA; Martin MT; Plastino A; Fuentes MA Phys Rev Lett; 2007 Oct; 99(15):154102. PubMed ID: 17995170 [TBL] [Abstract][Full Text] [Related]
28. Regenerating time series from ordinal networks. McCullough M; Sakellariou K; Stemler T; Small M Chaos; 2017 Mar; 27(3):035814. PubMed ID: 28364757 [TBL] [Abstract][Full Text] [Related]
29. Constructing ordinal partition transition networks from multivariate time series. Zhang J; Zhou J; Tang M; Guo H; Small M; Zou Y Sci Rep; 2017 Aug; 7(1):7795. PubMed ID: 28798326 [TBL] [Abstract][Full Text] [Related]
30. Distinguish between Stochastic and Chaotic Signals by a Local Structure-Based Entropy. Zhang Z; Wu J; Chen Y; Wang J; Xu J Entropy (Basel); 2022 Nov; 24(12):. PubMed ID: 36554157 [TBL] [Abstract][Full Text] [Related]
31. Characterizing Complex Dynamics in the Classical and Semi-Classical Duffing Oscillator Using Ordinal Patterns Analysis. Trostel ML; Misplon MZR; Aragoneses A; Pattanayak AK Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265129 [TBL] [Abstract][Full Text] [Related]
32. Permutation-information-theory approach to unveil delay dynamics from time-series analysis. Zunino L; Soriano MC; Fischer I; Rosso OA; Mirasso CR Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046212. PubMed ID: 21230370 [TBL] [Abstract][Full Text] [Related]
33. Handy fluctuation-dissipation relation to approach generic noisy systems and chaotic dynamics. Baldovin M; Caprini L; Vulpiani A Phys Rev E; 2021 Sep; 104(3):L032101. PubMed ID: 34654124 [TBL] [Abstract][Full Text] [Related]
34. Improving on transfer entropy-based network reconstruction using time-delays: Approach and validation. Sipahi R; Porfiri M Chaos; 2020 Feb; 30(2):023125. PubMed ID: 32113235 [TBL] [Abstract][Full Text] [Related]
35. Discriminating additive from dynamical noise for chaotic time series. Strumik M; Macek WM; Redaelli S Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036219. PubMed ID: 16241560 [TBL] [Abstract][Full Text] [Related]
36. Persistent homology of complex networks for dynamic state detection. Myers A; Munch E; Khasawneh FA Phys Rev E; 2019 Aug; 100(2-1):022314. PubMed ID: 31574743 [TBL] [Abstract][Full Text] [Related]
37. Stability-to-instability transition in the structure of large-scale networks. Hu D; Ronhovde P; Nussinov Z Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066106. PubMed ID: 23368003 [TBL] [Abstract][Full Text] [Related]
38. Stochastic approach for assessing the predictability of chaotic time series using reservoir computing. Khovanov IA Chaos; 2021 Aug; 31(8):083105. PubMed ID: 34470249 [TBL] [Abstract][Full Text] [Related]
39. Design of nonlinear optimal control for chaotic synchronization of coupled stochastic neural networks via Hamilton-Jacobi-Bellman equation. Liu Z Neural Netw; 2018 Mar; 99():166-177. PubMed ID: 29427843 [TBL] [Abstract][Full Text] [Related]
40. Learning to imitate stochastic time series in a compositional way by chaos. Namikawa J; Tani J Neural Netw; 2010 Jun; 23(5):625-38. PubMed ID: 20045751 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]