These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32611131)

  • 1. Chimeras and solitary states in 3D oscillator networks with inertia.
    Maistrenko V; Sudakov O; Osiv O
    Chaos; 2020 Jun; 30(6):063113. PubMed ID: 32611131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of rotatory solitary states in Kuramoto networks with inertia.
    Munyayev VO; Bolotov MI; Smirnov LA; Osipov GV; Belykh IV
    Phys Rev E; 2022 Feb; 105(2-1):024203. PubMed ID: 35291064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chimera states in coupled Kuramoto oscillators with inertia.
    Olmi S
    Chaos; 2015 Dec; 25(12):123125. PubMed ID: 26723164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solitary states and solitary state chimera in neural networks.
    Rybalova E; Anishchenko VS; Strelkova GI; Zakharova A
    Chaos; 2019 Jul; 29(7):071106. PubMed ID: 31370403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heteroclinic switching between chimeras in a ring of six oscillator populations.
    Lee S; Krischer K
    Chaos; 2023 Jun; 33(6):. PubMed ID: 37276574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of amplitude chimeras by time delay in oscillator networks.
    Gjurchinovski A; Schöll E; Zakharova A
    Phys Rev E; 2017 Apr; 95(4-1):042218. PubMed ID: 28505829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaotic chimera attractors in a triangular network of identical oscillators.
    Lee S; Krischer K
    Phys Rev E; 2023 May; 107(5-1):054205. PubMed ID: 37328989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solitary states for coupled oscillators with inertia.
    Jaros P; Brezetsky S; Levchenko R; Dudkowski D; Kapitaniak T; Maistrenko Y
    Chaos; 2018 Jan; 28(1):011103. PubMed ID: 29390619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. When three is a crowd: Chaos from clusters of Kuramoto oscillators with inertia.
    Brister BN; Belykh VN; Belykh IV
    Phys Rev E; 2020 Jun; 101(6-1):062206. PubMed ID: 32688588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hysteretic transitions in the Kuramoto model with inertia.
    Olmi S; Navas A; Boccaletti S; Torcini A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042905. PubMed ID: 25375565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spiral wave chimeras in nonlocally coupled bicomponent oscillators.
    Li Y; Li H; Chen Y; Gao S; Dai Q; Yang J
    Phys Rev E; 2023 Dec; 108(6-1):064206. PubMed ID: 38243460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The chimera state in colloidal phase oscillators with hydrodynamic interaction.
    Hamilton E; Bruot N; Cicuta P
    Chaos; 2017 Dec; 27(12):123108. PubMed ID: 29289052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smallest chimera states.
    Maistrenko Y; Brezetsky S; Jaros P; Levchenko R; Kapitaniak T
    Phys Rev E; 2017 Jan; 95(1-1):010203. PubMed ID: 28208439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bistability of patterns of synchrony in Kuramoto oscillators with inertia.
    Belykh IV; Brister BN; Belykh VN
    Chaos; 2016 Sep; 26(9):094822. PubMed ID: 27781476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basins of attraction of chimera states on networks.
    Li Q; Larosz KC; Han D; Ji P; Kurths J
    Front Physiol; 2022; 13():959431. PubMed ID: 36160849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Networks of coupled oscillators: From phase to amplitude chimeras.
    Banerjee T; Biswas D; Ghosh D; Schöll E; Zakharova A
    Chaos; 2018 Nov; 28(11):113124. PubMed ID: 30501215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chimera patterns under the impact of noise.
    Loos SA; Claussen JC; Schöll E; Zakharova A
    Phys Rev E; 2016 Jan; 93(1):012209. PubMed ID: 26871075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weak chimeras in minimal networks of coupled phase oscillators.
    Ashwin P; Burylko O
    Chaos; 2015 Jan; 25(1):013106. PubMed ID: 25637917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalized splay states in phase oscillator networks.
    Berner R; Yanchuk S; Maistrenko Y; Schöll E
    Chaos; 2021 Jul; 31(7):073128. PubMed ID: 34340340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breathing and switching cyclops states in Kuramoto networks with higher-mode coupling.
    Bolotov MI; Munyayev VO; Smirnov LA; Osipov GV; Belykh I
    Phys Rev E; 2024 May; 109(5-1):054202. PubMed ID: 38907462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.