BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32611201)

  • 1. Enhanced Descending Corticomuscular Coupling During Hand Grip With Static Force Compared With Enhancing Force.
    Gao L; Wu H; Cheng W; Lan B; Ren H; Zhang L; Wang L
    Clin EEG Neurosci; 2021 Nov; 52(6):436-443. PubMed ID: 32611201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of unilateral contraction of hand muscles on the contralateral corticomuscular coherence during bimanual motor tasks.
    Zheng Y; Gao L; Wang G; Wang Y; Yang Z; Wang X; Li T; Dang C; Zhu R; Wang J
    Neuropsychologia; 2016 May; 85():199-207. PubMed ID: 27018484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional corticospinal projections from human supplementary motor area revealed by corticomuscular coherence during precise grip force control.
    Chen S; Entakli J; Bonnard M; Berton E; De Graaf JB
    PLoS One; 2013; 8(3):e60291. PubMed ID: 23555945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnification of visual feedback modulates corticomuscular and intermuscular coherences differently in young and elderly adults.
    Watanabe T; Nojima I; Mima T; Sugiura H; Kirimoto H
    Neuroimage; 2020 Oct; 220():117089. PubMed ID: 32592849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions of descending and ascending pathways to corticomuscular coherence in humans.
    Witham CL; Riddle CN; Baker MR; Baker SN
    J Physiol; 2011 Aug; 589(Pt 15):3789-800. PubMed ID: 21624970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta-Range Corticomuscular Coupling Reflects Asymmetries in Hand Movement.
    Chen X; Zhang Y; Yang Y; Li X; Xie P
    IEEE Trans Neural Syst Rehabil Eng; 2020 Nov; 28(11):2575-2585. PubMed ID: 32894717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applying support vector regression analysis on grip force level-related corticomuscular coherence.
    Rong Y; Han X; Hao D; Cao L; Wang Q; Li M; Duan L; Zeng Y
    J Comput Neurosci; 2014 Oct; 37(2):281-91. PubMed ID: 24756619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reorganization of functional and directed corticomuscular connectivity during precision grip from childhood to adulthood.
    Beck MM; Spedden ME; Lundbye-Jensen J
    Sci Rep; 2021 Nov; 11(1):22870. PubMed ID: 34819532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulation of peripheral neural feedback loops alters human corticomuscular coherence.
    Riddle CN; Baker SN
    J Physiol; 2005 Jul; 566(Pt 2):625-39. PubMed ID: 15919711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ascending beta oscillation from finger muscle to sensorimotor cortex contributes to enhanced steady-state isometric contraction in humans.
    Lim M; Kim JS; Kim M; Chung CK
    Clin Neurophysiol; 2014 Oct; 125(10):2036-45. PubMed ID: 24618217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying bidirectional total and non-linear information flow in functional corticomuscular coupling during a dorsiflexion task: a pilot study.
    Liang T; Zhang Q; Liu X; Dong B; Liu X; Wang H
    J Neuroeng Rehabil; 2021 May; 18(1):74. PubMed ID: 33947410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output.
    Kristeva R; Patino L; Omlor W
    Neuroimage; 2007 Jul; 36(3):785-92. PubMed ID: 17493837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional connectivity in the neuromuscular system underlying bimanual coordination.
    de Vries IE; Daffertshofer A; Stegeman DF; Boonstra TW
    J Neurophysiol; 2016 Dec; 116(6):2576-2585. PubMed ID: 27628205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gamma frequency band shift of contralateral corticomuscular synchronous oscillations with force strength for hand movement tasks.
    Li S; Fan M; Yu H; Gao L
    Neuroreport; 2020 Mar; 31(4):338-345. PubMed ID: 32058430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corticomuscular synchronization with small and large dynamic force output.
    Andrykiewicz A; Patino L; Naranjo JR; Witte M; Hepp-Reymond MC; Kristeva R
    BMC Neurosci; 2007 Nov; 8():101. PubMed ID: 18042289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An EEG-EMG correlation-based brain-computer interface for hand orthosis supported neuro-rehabilitation.
    Chowdhury A; Raza H; Meena YK; Dutta A; Prasad G
    J Neurosci Methods; 2019 Jan; 312():1-11. PubMed ID: 30452976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digit displacement, not object compliance, underlies task dependent modulations in human corticomuscular coherence.
    Riddle CN; Baker SN
    Neuroimage; 2006 Nov; 33(2):618-27. PubMed ID: 16963283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of diazepam on motor cortical oscillations and corticomuscular coherence studied in man.
    Baker MR; Baker SN
    J Physiol; 2003 Feb; 546(Pt 3):931-42. PubMed ID: 12563016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Task-dependent modulations of cortical oscillatory activity in human subjects during a bimanual precision grip task.
    Kilner JM; Salenius S; Baker SN; Jackson A; Hari R; Lemon RN
    Neuroimage; 2003 Jan; 18(1):67-73. PubMed ID: 12507444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corticomuscular and bilateral EMG coherence reflect distinct aspects of neural synchronization.
    Boonstra TW; van Wijk BC; Praamstra P; Daffertshofer A
    Neurosci Lett; 2009 Sep; 463(1):17-21. PubMed ID: 19619608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.