BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 32611376)

  • 1. Chromatin 3D structure reconstruction with consideration of adjacency relationship among genomic loci.
    Li FZ; Liu ZE; Li XY; Bu LM; Bu HX; Liu H; Zhang CM
    BMC Bioinformatics; 2020 Jul; 21(1):272. PubMed ID: 32611376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Genome Reconstruction with ShRec3D+ and Hi-C Data.
    Li J; Zhang W; Li X
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):460-468. PubMed ID: 26955049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A statistical approach for inferring the 3D structure of the genome.
    Varoquaux N; Ay F; Noble WS; Vert JP
    Bioinformatics; 2014 Jun; 30(12):i26-33. PubMed ID: 24931992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale 3D chromatin reconstruction from chromosomal contacts.
    Zhang Y; Liu W; Lin Y; Ng YK; Li S
    BMC Genomics; 2019 Apr; 20(Suppl 2):186. PubMed ID: 30967119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D chromosome modeling with semi-definite programming and Hi-C data.
    Zhang Z; Li G; Toh KC; Sung WK
    J Comput Biol; 2013 Nov; 20(11):831-46. PubMed ID: 24195706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational methods for predicting 3D genomic organization from high-resolution chromosome conformation capture data.
    MacKay K; Kusalik A
    Brief Funct Genomics; 2020 Jul; 19(4):292-308. PubMed ID: 32353112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring 3D chromatin structure using a multiscale approach based on quaternions.
    Caudai C; Salerno E; Zoppè M; Tonazzini A
    BMC Bioinformatics; 2015 Jul; 16():234. PubMed ID: 26220581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromosome Three-Dimensional Structure Reconstruction: An Iterative ShRec3D Algorithm.
    Li FZ; Zhang XF; Cai HY; Ran LQ; Zhou HY; Liu ZE
    J Comput Biol; 2023 May; 30(5):575-587. PubMed ID: 36847350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstructing spatial organizations of chromosomes through manifold learning.
    Zhu G; Deng W; Hu H; Ma R; Zhang S; Yang J; Peng J; Kaplan T; Zeng J
    Nucleic Acids Res; 2018 May; 46(8):e50. PubMed ID: 29408992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing stationary distributions derived from chromatin contact maps.
    Segal MR; Fletez-Brant K
    BMC Bioinformatics; 2020 Feb; 21(1):73. PubMed ID: 32093610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of 3D genome architecture via a two-stage algorithm.
    Segal MR; Bengtsson HL
    BMC Bioinformatics; 2015 Nov; 16():373. PubMed ID: 26553003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unified framework for inferring the multi-scale organization of chromatin domains from Hi-C.
    Bak JH; Kim MH; Liu L; Hyeon C
    PLoS Comput Biol; 2021 Mar; 17(3):e1008834. PubMed ID: 33724986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosome conformation capture technologies and their impact in understanding genome function.
    Sati S; Cavalli G
    Chromosoma; 2017 Feb; 126(1):33-44. PubMed ID: 27130552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GSDB: a database of 3D chromosome and genome structures reconstructed from Hi-C data.
    Oluwadare O; Highsmith M; Turner D; Lieberman Aiden E; Cheng J
    BMC Mol Cell Biol; 2020 Aug; 21(1):60. PubMed ID: 32758136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HSA: integrating multi-track Hi-C data for genome-scale reconstruction of 3D chromatin structure.
    Zou C; Zhang Y; Ouyang Z
    Genome Biol; 2016 Mar; 17():40. PubMed ID: 26936376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome3D: reconstructing three-dimensional chromosomal structures from Hi-C interaction frequency data using distance geometry simulated annealing.
    Adhikari B; Trieu T; Cheng J
    BMC Genomics; 2016 Nov; 17(1):886. PubMed ID: 27821047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inference of chromosome 3D structures from GAM data by a physics computational approach.
    Fiorillo L; Bianco S; Chiariello AM; Barbieri M; Esposito A; Annunziatella C; Conte M; Corrado A; Prisco A; Pombo A; Nicodemi M
    Methods; 2020 Oct; 181-182():70-79. PubMed ID: 31604121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The 3D Organization of Chromatin Colors in Mammalian Nuclei.
    Carron L; Morlot JB; Lesne A; Mozziconacci J
    Methods Mol Biol; 2022; 2301():317-336. PubMed ID: 34415544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D genome reconstruction from chromosomal contacts.
    Lesne A; Riposo J; Roger P; Cournac A; Mozziconacci J
    Nat Methods; 2014 Nov; 11(11):1141-3. PubMed ID: 25240436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.