These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 32611376)

  • 21. Chromatin 3D Reconstruction from Chromosomal Contacts Using a Genetic Algorithm.
    Kapilevich V; Seno S; Matsuda H; Takenaka Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1620-1626. PubMed ID: 29994156
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ChromeBat: A Bio-Inspired Approach to 3D Genome Reconstruction.
    Collins B; Oluwadare O; Brown P
    Genes (Basel); 2021 Nov; 12(11):. PubMed ID: 34828363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A (3D-Nuclear) Space Odyssey: Making Sense of Hi-C Maps.
    Mota-Gómez I; Lupiáñez DG
    Genes (Basel); 2019 May; 10(6):. PubMed ID: 31146487
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The DLO Hi-C Tool for Digestion-Ligation-Only Hi-C Chromosome Conformation Capture Data Analysis.
    Hong P; Jiang H; Xu W; Lin D; Xu Q; Cao G; Li G
    Genes (Basel); 2020 Mar; 11(3):. PubMed ID: 32164155
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines.
    Khalil AIS; Muzaki SRBM; Chattopadhyay A; Sanyal A
    BMC Bioinformatics; 2020 Nov; 21(1):506. PubMed ID: 33160308
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Practical Analysis of Genome Contact Interaction Experiments.
    Carty MA; Elemento O
    Methods Mol Biol; 2016; 1418():177-89. PubMed ID: 27008015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MHiC, an integrated user-friendly tool for the identification and visualization of significant interactions in Hi-C data.
    Khakmardan S; Rezvani M; Pouyan AA; Fateh M; Alinejad-Rokny H
    BMC Genomics; 2020 Mar; 21(1):225. PubMed ID: 32164554
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromosome Conformation Capture in Primary Human Cells.
    Cortesi A; Bodega B
    Methods Mol Biol; 2016; 1480():213-21. PubMed ID: 27659988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational Analysis of Hi-C Data.
    Forcato M; Bicciato S
    Methods Mol Biol; 2021; 2157():103-125. PubMed ID: 32820401
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient Hi-C inversion facilitates chromatin folding mechanism discovery and structure prediction.
    Schuette G; Ding X; Zhang B
    Biophys J; 2023 Sep; 122(17):3425-3438. PubMed ID: 37496267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polymer Simulations of Heteromorphic Chromatin Predict the 3D Folding of Complex Genomic Loci.
    Buckle A; Brackley CA; Boyle S; Marenduzzo D; Gilbert N
    Mol Cell; 2018 Nov; 72(4):786-797.e11. PubMed ID: 30344096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Si-C is a method for inferring super-resolution intact genome structure from single-cell Hi-C data.
    Meng L; Wang C; Shi Y; Luo Q
    Nat Commun; 2021 Jul; 12(1):4369. PubMed ID: 34272403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deciphering 3D Organization of Chromosomes Using Hi-C Data.
    Hofmann A; Heermann DW
    Methods Mol Biol; 2018; 1837():389-401. PubMed ID: 30109620
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Four-Dimensional Chromosome Structure Prediction.
    Highsmith M; Cheng J
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575948
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DeCOOC Deconvoluted Hi-C Map Characterizes the Chromatin Architecture of Cells in Physiologically Distinctive Tissues.
    Wang J; Lu L; Zheng S; Wang D; Jin L; Zhang Q; Li M; Zhang Z
    Adv Sci (Weinh); 2023 Sep; 10(27):e2301058. PubMed ID: 37515382
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of High-Resolution 3D Chromatin Organization Using Circular Chromosome Conformation Capture (4C-seq).
    Matelot M; Noordermeer D
    Methods Mol Biol; 2016; 1480():223-41. PubMed ID: 27659989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation and comparison of methods for recapitulation of 3D spatial chromatin structures.
    Park J; Lin S
    Brief Bioinform; 2019 Jul; 20(4):1205-1214. PubMed ID: 29091999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving comparative analyses of Hi-C data via contrastive self-supervised learning.
    Li H; He X; Kurowski L; Zhang R; Zhao D; Zeng J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37287135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measuring significant changes in chromatin conformation with ACCOST.
    Cook KB; Hristov BH; Le Roch KG; Vert JP; Noble WS
    Nucleic Acids Res; 2020 Mar; 48(5):2303-2311. PubMed ID: 32034421
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis methods for studying the 3D architecture of the genome.
    Ay F; Noble WS
    Genome Biol; 2015 Sep; 16():183. PubMed ID: 26328929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.