BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1963 related articles for article (PubMed ID: 32612154)

  • 41. Combining Cancer Vaccines with Immunotherapy: Establishing a New Immunological Approach.
    Kim CG; Sang YB; Lee JH; Chon HJ
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360800
    [TBL] [Abstract][Full Text] [Related]  

  • 42. RNA Sequencing of the Tumor Microenvironment in Precision Cancer Immunotherapy.
    Lau D; Bobe AM; Khan AA
    Trends Cancer; 2019 Mar; 5(3):149-156. PubMed ID: 30898262
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Complement Receptors C3aR and C5aR Are a New Class of Immune Checkpoint Receptor in Cancer Immunotherapy.
    Wang Y; Zhang H; He YW
    Front Immunol; 2019; 10():1574. PubMed ID: 31379815
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Frontiers in cancer immunotherapy-a symposium report.
    Cable J; Greenbaum B; Pe'er D; Bollard CM; Bruni S; Griffin ME; Allison JP; Wu CJ; Subudhi SK; Mardis ER; Brentjens R; Sosman JA; Cemerski S; Zavitsanou AM; Proia T; Egeblad M; Nolan G; Goswami S; Spranger S; Mackall CL
    Ann N Y Acad Sci; 2021 Apr; 1489(1):30-47. PubMed ID: 33184911
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CD8
    Farhood B; Najafi M; Mortezaee K
    J Cell Physiol; 2019 Jun; 234(6):8509-8521. PubMed ID: 30520029
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Association of Germline Variants in Natural Killer Cells With Tumor Immune Microenvironment Subtypes, Tumor-Infiltrating Lymphocytes, Immunotherapy Response, Clinical Outcomes, and Cancer Risk.
    Xu X; Li J; Zou J; Feng X; Zhang C; Zheng R; Duanmu W; Saha-Mandal A; Ming Z; Wang E
    JAMA Netw Open; 2019 Sep; 2(9):e199292. PubMed ID: 31483464
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multi-Omics Perspective Reveals the Different Patterns of Tumor Immune Microenvironment Based on Programmed Death Ligand 1 (PD-L1) Expression and Predictor of Responses to Immune Checkpoint Blockade across Pan-Cancer.
    Huang K; Hu M; Chen J; Wei J; Qin J; Lin S; Du H
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068143
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dendritic Cells and Their Role in Immunotherapy.
    Gardner A; de Mingo Pulido Á; Ruffell B
    Front Immunol; 2020; 11():924. PubMed ID: 32508825
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Are tumor-infiltrating lymphocytes protagonists or background actors in patient selection for cancer immunotherapy?
    Zito Marino F; Ascierto PA; Rossi G; Staibano S; Montella M; Russo D; Alfano R; Morabito A; Botti G; Franco R
    Expert Opin Biol Ther; 2017 Jun; 17(6):735-746. PubMed ID: 28318336
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comprehensive description of the current breast cancer microenvironment advancements via single-cell analysis.
    Yan X; Xie Y; Yang F; Hua Y; Zeng T; Sun C; Yang M; Huang X; Wu H; Fu Z; Li W; Jiao S; Yin Y
    J Exp Clin Cancer Res; 2021 Apr; 40(1):142. PubMed ID: 33906694
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Cancer-Specific Qualitative Method for Estimating the Proportion of Tumor-Infiltrating Immune Cells.
    Xiao H; Zhang J; Wang K; Song K; Zheng H; Yang J; Li K; Yuan R; Zhao W; Hui Y
    Front Immunol; 2021; 12():672031. PubMed ID: 34054849
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intratumoral regulatory T cells: markers, subsets and their impact on anti-tumor immunity.
    Yano H; Andrews LP; Workman CJ; Vignali DAA
    Immunology; 2019 Jul; 157(3):232-247. PubMed ID: 31087644
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Applications of Single-Cell Omics in Tumor Immunology.
    Liu J; Qu S; Zhang T; Gao Y; Shi H; Song K; Chen W; Yin W
    Front Immunol; 2021; 12():697412. PubMed ID: 34177965
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cyclic Multiplexed-Immunofluorescence (cmIF), a Highly Multiplexed Method for Single-Cell Analysis.
    Eng J; Thibault G; Luoh SW; Gray JW; Chang YH; Chin K
    Methods Mol Biol; 2020; 2055():521-562. PubMed ID: 31502168
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cancer immunotherapy: a treatment for the masses.
    Blattman JN; Greenberg PD
    Science; 2004 Jul; 305(5681):200-5. PubMed ID: 15247469
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Immunomodulation to enhance the efficacy of an HPV therapeutic vaccine.
    Smalley Rumfield C; Pellom ST; Morillon Ii YM; Schlom J; Jochems C
    J Immunother Cancer; 2020 Jun; 8(1):. PubMed ID: 32554612
    [TBL] [Abstract][Full Text] [Related]  

  • 57. At the bench: Engineering the next generation of cancer vaccines.
    Shae D; Baljon JJ; Wehbe M; Becker KW; Sheehy TL; Wilson JT
    J Leukoc Biol; 2020 Oct; 108(4):1435-1453. PubMed ID: 31430398
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Immunotherapies and Combination Strategies for Immuno-Oncology.
    Barbari C; Fontaine T; Parajuli P; Lamichhane N; Jakubski S; Lamichhane P; Deshmukh RR
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32679922
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of the tumor immune microenvironment by the Hippo Pathway: Implications for cancer immunotherapy.
    Liu C; Song Y; Li D; Wang B
    Int Immunopharmacol; 2023 Sep; 122():110586. PubMed ID: 37393838
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Targeting the epigenome to reinvigorate T cells for cancer immunotherapy.
    Xiong D; Zhang L; Sun ZJ
    Mil Med Res; 2023 Dec; 10(1):59. PubMed ID: 38044445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 99.