BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32612205)

  • 1. Genome-wide investigation of gene-cancer associations for the prediction of novel therapeutic targets in oncology.
    Bazaga A; Leggate D; Weisser H
    Sci Rep; 2020 Jul; 10(1):10787. PubMed ID: 32612205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning prediction of oncology drug targets based on protein and network properties.
    Dezső Z; Ceccarelli M
    BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of network link prediction in drug discovery.
    Abbas K; Abbasi A; Dong S; Niu L; Yu L; Chen B; Cai SM; Hasan Q
    BMC Bioinformatics; 2021 Apr; 22(1):187. PubMed ID: 33845763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico prediction of novel therapeutic targets using gene-disease association data.
    Ferrero E; Dunham I; Sanseau P
    J Transl Med; 2017 Aug; 15(1):182. PubMed ID: 28851378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Machine Learning Approach for Drug-target Interaction Prediction using Wrapper Feature Selection and Class Balancing.
    Redkar S; Mondal S; Joseph A; Hareesha KS
    Mol Inform; 2020 May; 39(5):e1900062. PubMed ID: 32003548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology.
    Hudson IL
    Methods Mol Biol; 2021; 2190():167-184. PubMed ID: 32804365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-view self-attention for interpretable drug-target interaction prediction.
    Agyemang B; Wu WP; Kpiebaareh MY; Lei Z; Nanor E; Chen L
    J Biomed Inform; 2020 Oct; 110():103547. PubMed ID: 32860883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SCNrank: spectral clustering for network-based ranking to reveal potential drug targets and its application in pancreatic ductal adenocarcinoma.
    Liu E; Zhang ZZ; Cheng X; Liu X; Cheng L
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):50. PubMed ID: 32241274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Empowering the discovery of novel target-disease associations via machine learning approaches in the open targets platform.
    Han Y; Klinger K; Rajpal DK; Zhu C; Teeple E
    BMC Bioinformatics; 2022 Jun; 23(1):232. PubMed ID: 35710324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signature microRNAs and long noncoding RNAs in laryngeal cancer recurrence identified using a competing endogenous RNA network.
    Tang Z; Wei G; Zhang L; Xu Z
    Mol Med Rep; 2019 Jun; 19(6):4806-4818. PubMed ID: 31059106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance.
    Lewis JE; Kemp ML
    Nat Commun; 2021 May; 12(1):2700. PubMed ID: 33976213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Druggable cancer secretome: neoplasm-associated traits.
    Narayanan R
    Cancer Genomics Proteomics; 2015; 12(3):119-31. PubMed ID: 25977171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introduction: Cancer Gene Networks.
    Clarke R
    Methods Mol Biol; 2017; 1513():1-9. PubMed ID: 27807826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting gene knockout effects from expression data.
    Rosenski J; Shifman S; Kaplan T
    BMC Med Genomics; 2023 Feb; 16(1):26. PubMed ID: 36803845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Essential gene prediction using limited gene essentiality information-An integrative semi-supervised machine learning strategy.
    Nandi S; Ganguli P; Sarkar RR
    PLoS One; 2020; 15(11):e0242943. PubMed ID: 33253254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GuiltyTargets: Prioritization of Novel Therapeutic Targets With Network Representation Learning.
    Muslu O; Hoyt CT; Lacerda M; Hofmann-Apitius M; Frohlich H
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):491-500. PubMed ID: 32750869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating Biological Networks for Drug Target Prediction and Prioritization.
    Ji X; Freudenberg JM; Agarwal P
    Methods Mol Biol; 2019; 1903():203-218. PubMed ID: 30547444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting potential cancer genes by integrating network properties, sequence features and functional annotations.
    Liu W; Xie H
    Sci China Life Sci; 2013 Aug; 56(8):751-7. PubMed ID: 23838808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimisation of cancer classification by machine learning generates an enriched list of candidate drug targets and biomarkers.
    Ramroach S; Joshi A; John M
    Mol Omics; 2020 Apr; 16(2):113-125. PubMed ID: 32095794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting protein targets for drug-like compounds using transcriptomics.
    Pabon NA; Xia Y; Estabrooks SK; Ye Z; Herbrand AK; Süß E; Biondi RM; Assimon VA; Gestwicki JE; Brodsky JL; Camacho CJ; Bar-Joseph Z
    PLoS Comput Biol; 2018 Dec; 14(12):e1006651. PubMed ID: 30532261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.