BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

525 related articles for article (PubMed ID: 32612242)

  • 1. The plasticity of DNA replication forks in response to clinically relevant genotoxic stress.
    Berti M; Cortez D; Lopes M
    Nat Rev Mol Cell Biol; 2020 Oct; 21(10):633-651. PubMed ID: 32612242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of RTF2 from Stalled Replisomes Promotes Maintenance of Genome Integrity.
    Kottemann MC; Conti BA; Lach FP; Smogorzewska A
    Mol Cell; 2018 Jan; 69(1):24-35.e5. PubMed ID: 29290612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maintaining genome stability at the replication fork.
    Branzei D; Foiani M
    Nat Rev Mol Cell Biol; 2010 Mar; 11(3):208-19. PubMed ID: 20177396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replication stress: from chromatin to immunity and beyond.
    Lin YL; Pasero P
    Curr Opin Genet Dev; 2021 Dec; 71():136-142. PubMed ID: 34455237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATR-Mediated Global Fork Slowing and Reversal Assist Fork Traverse and Prevent Chromosomal Breakage at DNA Interstrand Cross-Links.
    Mutreja K; Krietsch J; Hess J; Ursich S; Berti M; Roessler FK; Zellweger R; Patra M; Gasser G; Lopes M
    Cell Rep; 2018 Sep; 24(10):2629-2642.e5. PubMed ID: 30184498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replication Stress Shapes a Protective Chromatin Environment across Fragile Genomic Regions.
    Kim J; Sturgill D; Sebastian R; Khurana S; Tran AD; Edwards GB; Kruswick A; Burkett S; Hosogane EK; Hannon WW; Weyemi U; Bonner WM; Luger K; Oberdoerffer P
    Mol Cell; 2018 Jan; 69(1):36-47.e7. PubMed ID: 29249653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Rrm3 Function in Restricting DNA Replication via an Orc5-Binding Domain Is Genetically Separable from Rrm3 Function as an ATPase/Helicase in Facilitating Fork Progression.
    Syed S; Desler C; Rasmussen LJ; Schmidt KH
    PLoS Genet; 2016 Dec; 12(12):e1006451. PubMed ID: 27923055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replication fork movement sets chromatin loop size and origin choice in mammalian cells.
    Courbet S; Gay S; Arnoult N; Wronka G; Anglana M; Brison O; Debatisse M
    Nature; 2008 Sep; 455(7212):557-60. PubMed ID: 18716622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fork and the kinase: a DNA replication tale from a CHK1 perspective.
    González Besteiro MA; Gottifredi V
    Mutat Res Rev Mutat Res; 2015; 763():168-80. PubMed ID: 25795119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stalled replication forks: making ends meet for recognition and stabilization.
    Masai H; Tanaka T; Kohda D
    Bioessays; 2010 Aug; 32(8):687-97. PubMed ID: 20658707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A tough row to hoe: when replication forks encounter DNA damage.
    Patel DR; Weiss RS
    Biochem Soc Trans; 2018 Dec; 46(6):1643-1651. PubMed ID: 30514768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replication fork instability and the consequences of fork collisions from rereplication.
    Alexander JL; Orr-Weaver TL
    Genes Dev; 2016 Oct; 30(20):2241-2252. PubMed ID: 27898391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replication fork stalling at natural impediments.
    Mirkin EV; Mirkin SM
    Microbiol Mol Biol Rev; 2007 Mar; 71(1):13-35. PubMed ID: 17347517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mammalian DNA replication elongation checkpoint: implication of Chk1 and relationship with origin firing as determined by single DNA molecule and single cell analyses.
    Conti C; Seiler JA; Pommier Y
    Cell Cycle; 2007 Nov; 6(22):2760-7. PubMed ID: 17986860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of Chk2/CHEK2 in guarding against environmentally induced DNA damage and replication-stress.
    Mustofa MK; Tanoue Y; Tateishi C; Vaziri C; Tateishi S
    Environ Mol Mutagen; 2020 Aug; 61(7):730-735. PubMed ID: 32578892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. swi1- and swi3-dependent and independent replication fork arrest at the ribosomal DNA of Schizosaccharomyces pombe.
    Krings G; Bastia D
    Proc Natl Acad Sci U S A; 2004 Sep; 101(39):14085-90. PubMed ID: 15371597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA replication and cancer: From dysfunctional replication origin activities to therapeutic opportunities.
    Boyer AS; Walter D; Sørensen CS
    Semin Cancer Biol; 2016 Jun; 37-38():16-25. PubMed ID: 26805514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ubiquitylation at Stressed Replication Forks: Mechanisms and Functions.
    Mirsanaye AS; Typas D; Mailand N
    Trends Cell Biol; 2021 Jul; 31(7):584-597. PubMed ID: 33612353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA replication and replication stress response in the context of nuclear architecture.
    González-Acosta D; Lopes M
    Chromosoma; 2024 Jan; 133(1):57-75. PubMed ID: 38055079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chromatin structure-based model accurately predicts DNA replication timing in human cells.
    Gindin Y; Valenzuela MS; Aladjem MI; Meltzer PS; Bilke S
    Mol Syst Biol; 2014 Mar; 10(3):722. PubMed ID: 24682507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.