BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

525 related articles for article (PubMed ID: 32612242)

  • 21. Chromatin structure and replication origins: determinants of chromosome replication and nuclear organization.
    Smith OK; Aladjem MI
    J Mol Biol; 2014 Oct; 426(20):3330-41. PubMed ID: 24905010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Maintenance of fork integrity at damaged DNA and natural pause sites.
    Tourrière H; Pasero P
    DNA Repair (Amst); 2007 Jul; 6(7):900-13. PubMed ID: 17379579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA damage responses that enhance resilience to replication stress.
    Yoshida K; Fujita M
    Cell Mol Life Sci; 2021 Nov; 78(21-22):6763-6773. PubMed ID: 34463774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A model for DNA replication showing how dormant origins safeguard against replication fork failure.
    Blow JJ; Ge XQ
    EMBO Rep; 2009 Apr; 10(4):406-12. PubMed ID: 19218919
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Repeat RNAs associate with replication forks and post-replicative DNA.
    Gylling HM; Gonzalez-Aguilera C; Smith MA; Kaczorowski DC; Groth A; Lund AH
    RNA; 2020 Sep; 26(9):1104-1117. PubMed ID: 32393525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ATR prohibits replication catastrophe by preventing global exhaustion of RPA.
    Toledo LI; Altmeyer M; Rask MB; Lukas C; Larsen DH; Povlsen LK; Bekker-Jensen S; Mailand N; Bartek J; Lukas J
    Cell; 2013 Nov; 155(5):1088-103. PubMed ID: 24267891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PARI Regulates Stalled Replication Fork Processing To Maintain Genome Stability upon Replication Stress in Mice.
    Mochizuki AL; Katanaya A; Hayashi E; Hosokawa M; Moribe E; Motegi A; Ishiai M; Takata M; Kondoh G; Watanabe H; Nakatsuji N; Chuma S
    Mol Cell Biol; 2017 Dec; 37(23):. PubMed ID: 28894029
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fork restart protein, PriA, binds around oriC after depletion of nucleotide precursors: Replication fork arrest near the replication origin.
    Tanaka T; Nishito Y; Masai H
    Biochem Biophys Res Commun; 2016 Feb; 470(3):546-551. PubMed ID: 26801562
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deregulated origin licensing leads to chromosomal breaks by rereplication of a gapped DNA template.
    Neelsen KJ; Zanini IM; Mijic S; Herrador R; Zellweger R; Ray Chaudhuri A; Creavin KD; Blow JJ; Lopes M
    Genes Dev; 2013 Dec; 27(23):2537-42. PubMed ID: 24298053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells.
    Arnaudeau C; Lundin C; Helleday T
    J Mol Biol; 2001 Apr; 307(5):1235-45. PubMed ID: 11292338
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Model-based analysis of DNA replication profiles: predicting replication fork velocity and initiation rate by profiling free-cycling cells.
    Gispan A; Carmi M; Barkai N
    Genome Res; 2017 Feb; 27(2):310-319. PubMed ID: 28028072
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25847274
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25773776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stalled replication forks generate a distinct mutational signature in yeast.
    Larsen NB; Liberti SE; Vogel I; Jørgensen SW; Hickson ID; Mankouri HW
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):9665-9670. PubMed ID: 28827358
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MOF Suppresses Replication Stress and Contributes to Resolution of Stalled Replication Forks.
    Singh DK; Pandita RK; Singh M; Chakraborty S; Hambarde S; Ramnarain D; Charaka V; Ahmed KM; Hunt CR; Pandita TK
    Mol Cell Biol; 2018 Mar; 38(6):. PubMed ID: 29298824
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ATR kinase inhibition induces unscheduled origin firing through a Cdc7-dependent association between GINS and And-1.
    Moiseeva T; Hood B; Schamus S; O'Connor MJ; Conrads TP; Bakkenist CJ
    Nat Commun; 2017 Nov; 8(1):1392. PubMed ID: 29123096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Epigenomic replication: linking epigenetics to DNA replication.
    McNairn AJ; Gilbert DM
    Bioessays; 2003 Jul; 25(7):647-56. PubMed ID: 12815720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 53BP1 Mediates ATR-Chk1 Signaling and Protects Replication Forks under Conditions of Replication Stress.
    Her J; Ray C; Altshuler J; Zheng H; Bunting SF
    Mol Cell Biol; 2018 Apr; 38(8):. PubMed ID: 29378830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of replication fork speed: Mechanisms and impact on genomic stability.
    Merchut-Maya JM; Bartek J; Maya-Mendoza A
    DNA Repair (Amst); 2019 Sep; 81():102654. PubMed ID: 31320249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Replication fork slowing and stalling are distinct, checkpoint-independent consequences of replicating damaged DNA.
    Iyer DR; Rhind N
    PLoS Genet; 2017 Aug; 13(8):e1006958. PubMed ID: 28806726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.