These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32612591)

  • 1. Sugar Phosphorylation Controls Carbon Source Utilization and Virulence of
    Wijnants S; Riedelberger M; Penninger P; Kuchler K; Van Dijck P
    Front Microbiol; 2020; 11():1274. PubMed ID: 32612591
    [No Abstract]   [Full Text] [Related]  

  • 2. The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae.
    Rodríguez A; De La Cera T; Herrero P; Moreno F
    Biochem J; 2001 May; 355(Pt 3):625-31. PubMed ID: 11311123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state.
    De Winde JH; Crauwels M; Hohmann S; Thevelein JM; Winderickx J
    Eur J Biochem; 1996 Oct; 241(2):633-43. PubMed ID: 8917466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2.
    Hohmann S; Winderickx J; de Winde JH; Valckx D; Cobbaert P; Luyten K; de Meirsman C; Ramos J; Thevelein JM
    Microbiology (Reading); 1999 Mar; 145 ( Pt 3)():703-714. PubMed ID: 10217505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Botrytis cinerea hexokinase, Hxk1, but not the glucokinase, Glk1, is required for normal growth and sugar metabolism, and for pathogenicity on fruits.
    Rui O; Hahn M
    Microbiology (Reading); 2007 Aug; 153(Pt 8):2791-2802. PubMed ID: 17660443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional regulation of the Saccharomyces cerevisiae HXK1, HXK2 and GLK1 genes.
    Herrero P; Galíndez J; Ruiz N; Martínez-Campa C; Moreno F
    Yeast; 1995 Feb; 11(2):137-44. PubMed ID: 7732723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of hexokinases in epigenetic regulation: altered hexokinase expression and chromatin stability in yeast.
    Karri S; Dickinson Q; Jia J; Yang Y; Gan H; Wang Z; Deng Y; Yu C
    Epigenetics Chromatin; 2024 Aug; 17(1):27. PubMed ID: 39192292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetics of yeast glucokinase.
    Maitra PK; Lobo Z
    Genetics; 1983 Nov; 105(3):501-15. PubMed ID: 6357942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hexokinase and Glucokinases Are Essential for Fitness and Virulence in the Pathogenic Yeast
    Laurian R; Dementhon K; Doumèche B; Soulard A; Noel T; Lemaire M; Cotton P
    Front Microbiol; 2019; 10():327. PubMed ID: 30858840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic consequences of TDA1 deficiency in Saccharomyces cerevisiae: Protein kinase Tda1 is essential for Hxk1 and Hxk2 serine 15 phosphorylation.
    Müller H; Lesur A; Dittmar G; Gentzel M; Kettner K
    Sci Rep; 2022 Oct; 12(1):18084. PubMed ID: 36302925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Hexokinases in Epigenetic Regulation: Altered Hexokinase Expression and Chromatin Stability in Yeast.
    Karri S; Dickinson Q; Jia J; Gan H; Wang Z; Deng Y; Yu C
    Res Sq; 2024 Jan; ():. PubMed ID: 38352584
    [No Abstract]   [Full Text] [Related]  

  • 12. Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae.
    Bisson LF; Fraenkel DG
    Proc Natl Acad Sci U S A; 1983 Mar; 80(6):1730-4. PubMed ID: 6300872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose controls multiple processes in Saccharomyces cerevisiae through diverse combinations of signaling pathways.
    Belinchón MM; Gancedo JM
    FEMS Yeast Res; 2007 Sep; 7(6):808-18. PubMed ID: 17428308
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Laurian R; Ravent J; Dementhon K; Lemaire M; Soulard A; Cotton P
    Microorganisms; 2021 Apr; 9(4):. PubMed ID: 33920979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Emi2 Protein of
    Umekawa M; Hamada K; Isono N; Karita S
    J Appl Glycosci (1999); 2020; 67(4):103-109. PubMed ID: 34354536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sugar Sensing and Signaling in
    Van Ende M; Wijnants S; Van Dijck P
    Front Microbiol; 2019; 10():99. PubMed ID: 30761119
    [No Abstract]   [Full Text] [Related]  

  • 17. During the initiation of fermentation overexpression of hexokinase PII in yeast transiently causes a similar deregulation of glycolysis as deletion of Tps1.
    Ernandes JR; De Meirsman C; Rolland F; Winderickx J; de Winde J; Brandão RL; Thevelein JM
    Yeast; 1998 Feb; 14(3):255-69. PubMed ID: 9580251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique, Diverged, and Conserved Mitochondrial Functions Influencing Candida albicans Respiration.
    Sun N; Parrish RS; Calderone RA; Fonzi WA
    mBio; 2019 Jun; 10(3):. PubMed ID: 31239372
    [No Abstract]   [Full Text] [Related]  

  • 19. Role of the N-acetylglucosamine kinase (Hxk1) in the regulation of white-gray-opaque tristable phenotypic transitions in C. albicans.
    Cao C; Guan G; Du H; Tao L; Huang G
    Fungal Genet Biol; 2016 Jul; 92():26-32. PubMed ID: 27153757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ADH1 promotes Candida albicans pathogenicity by stimulating oxidative phosphorylation.
    Song Y; Li S; Zhao Y; Zhang Y; Lv Y; Jiang Y; Wang Y; Li D; Zhang H
    Int J Med Microbiol; 2019 Sep; 309(6):151330. PubMed ID: 31471070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.