BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 3261260)

  • 1. Excitation-contraction coupling in skeletal muscle fibers injected with the InsP3 blocker, heparin.
    Pape PC; Konishi M; Baylor SM; Somlyo AP
    FEBS Lett; 1988 Aug; 235(1-2):57-62. PubMed ID: 3261260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in peeled skeletal muscle fibers.
    Donaldson SK; Goldberg ND; Walseth TF; Huetteman DA
    Proc Natl Acad Sci U S A; 1988 Aug; 85(15):5749-53. PubMed ID: 3261014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of smooth and skeletal muscle activation by laser pulse photolysis of caged inositol 1,4,5-trisphosphate.
    Walker JW; Somlyo AV; Goldman YE; Somlyo AP; Trentham DR
    Nature; 1987 May 21-27; 327(6119):249-52. PubMed ID: 3494954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An examination of the ability of inositol 1,4,5-trisphosphate to induce calcium release and tension development in skinned skeletal muscle fibres of frog and crustacea.
    Lea TJ; Griffiths PJ; Tregear RT; Ashley CC
    FEBS Lett; 1986 Oct; 207(1):153-61. PubMed ID: 3490400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inositol 1,4,5-trisphosphate: a possible chemical link in excitation-contraction coupling in muscle.
    Vergara J; Tsien RY; Delay M
    Proc Natl Acad Sci U S A; 1985 Sep; 82(18):6352-6. PubMed ID: 2994073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inositol 1,4,5-trisphosphate-induced Ca2+ release from the sarcoplasmic reticulum and contraction in crustacean muscle.
    Rojas E; Nassar-Gentina V; Luxoro M; Pollard ME; Carrasco MA
    Can J Physiol Pharmacol; 1987 Apr; 65(4):672-80. PubMed ID: 2440541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inositol trisphosphate enhances calcium release in skinned cardiac and skeletal muscle.
    Nosek TM; Williams MF; Zeigler ST; Godt RE
    Am J Physiol; 1986 May; 250(5 Pt 1):C807-11. PubMed ID: 3085514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competitive, reversible, and potent antagonism of inositol 1,4,5-trisphosphate-activated calcium release by heparin.
    Ghosh TK; Eis PS; Mullaney JM; Ebert CL; Gill DL
    J Biol Chem; 1988 Aug; 263(23):11075-9. PubMed ID: 3136153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inositol trisphosphate stimulates calcium release from peeled skeletal muscle fibers.
    Donaldson SK; Goldberg ND; Walseth TF; Huetteman DA
    Biochim Biophys Acta; 1987 Jan; 927(1):92-9. PubMed ID: 3491629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inositol trisphosphate (InsP3) causes contraction in skeletal muscle only under artificial conditions: evidence that Ca2+ release can result from depolarization of T-tubules.
    Hannon JD; Lee NK; Yandong C; Blinks JR
    J Muscle Res Cell Motil; 1992 Aug; 13(4):447-56. PubMed ID: 1401040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitation-contraction coupling in intact frog skeletal muscle fibers injected with mmolar concentrations of fura-2.
    Hollingworth S; Harkins AB; Kurebayashi N; Konishi M; Baylor SM
    Biophys J; 1992 Jul; 63(1):224-34. PubMed ID: 1330027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inositol trisphosphate and excitation-contraction coupling in skeletal muscle.
    Hidalgo C; Jaimovich E
    J Bioenerg Biomembr; 1989 Apr; 21(2):267-81. PubMed ID: 2546932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inositol 1,4,5-trisphosphate-induced Ca2+ release is regulated by cytosolic Ca2+ in intact skeletal muscle.
    López JR; Terzic A
    Pflugers Arch; 1996 Sep; 432(5):782-90. PubMed ID: 8772127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opening of dihydropyridine calcium channels in skeletal muscle membranes by inositol trisphosphate.
    Vilven J; Coronado R
    Nature; 1988 Dec; 336(6199):587-9. PubMed ID: 2462164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Failure of inositol 1,4,5-trisphosphate to elicit or potentiate Ca2+ release from isolated skeletal muscle sarcoplasmic reticulum.
    Mikos GJ; Snow TR
    Biochim Biophys Acta; 1987 Feb; 927(2):256-60. PubMed ID: 3493032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Valinomycin and excitation-contraction coupling in skeletal muscle fibres of the frog.
    Pape PC; Konishi M; Baylor SM
    J Physiol; 1992 Apr; 449():219-35. PubMed ID: 1326044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of inositol 1,4,5-trisphosphate in excitation-contraction coupling in skeletal muscle.
    Volpe P; Di Virgilio F; Pozzan T; Salviati G
    FEBS Lett; 1986 Mar; 197(1-2):1-4. PubMed ID: 2419159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum.
    Ehrlich BE; Watras J
    Nature; 1988 Dec; 336(6199):583-6. PubMed ID: 2849060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions.
    Sáez JC; Connor JA; Spray DC; Bennett MV
    Proc Natl Acad Sci U S A; 1989 Apr; 86(8):2708-12. PubMed ID: 2784857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inositol 1,4,5-trisphosphate-sensitive Ca2+ release in rat fast- and slow-twitch skinned muscle fibres.
    Talon S; Huchet-Cadiou C; Léoty C
    Pflugers Arch; 1999 Nov; 438(6):804-16. PubMed ID: 10591069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.