These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32612742)

  • 1. Modeling and numerical simulation of the bubble cloud dynamics in an ultrasound field for burst wave lithotripsy.
    Maeda K; Colonius T; Maxwell A; Kreider W; Bailey M
    Proc Meet Acoust; 2018 Nov; 35(1):. PubMed ID: 32612742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy shielding by cavitation bubble clouds in burst wave lithotripsy.
    Maeda K; Maxwell AD; Colonius T; Kreider W; Bailey MR
    J Acoust Soc Am; 2018 Nov; 144(5):2952. PubMed ID: 30522301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bubble cloud dynamics in an ultrasound field.
    Maeda K; Colonius T
    J Fluid Mech; 2019 Mar; 862():1105-1134. PubMed ID: 31558848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Focused Ultrasound and Lithotripsy.
    Ikeda T; Yoshizawa S; Koizumi N; Mitsuishi M; Matsumoto Y
    Adv Exp Med Biol; 2016; 880():113-29. PubMed ID: 26486335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and experimental analysis of acoustic cavitation bubbles for Burst Wave Lithotripsy.
    Maeda K; Colonius T; Kreider W; Maxwell A; Cunitz B; Bailey M
    J Phys Conf Ser; 2015 Dec; 656():. PubMed ID: 27087826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bubbles with shock waves and ultrasound: a review.
    Ohl SW; Klaseboer E; Khoo BC
    Interface Focus; 2015 Oct; 5(5):20150019. PubMed ID: 26442143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interaction of shockwaves with a vapour bubble in boiling histotripsy: The shock scattering effect.
    Pahk KJ; Lee S; GĂ©lat P; de Andrade MO; Saffari N
    Ultrason Sonochem; 2021 Jan; 70():105312. PubMed ID: 32866882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of residual cavitation nuclei to enhance histotripsy erosion of model urinary stones.
    Duryea AP; Roberts WW; Cain CA; Hall TL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):896-904. PubMed ID: 25965682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of residual nuclei following a cavitation event using low-amplitude ultrasound.
    Duryea AP; Cain CA; Tamaddoni HA; Roberts WW; Hall TL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Oct; 61(10):1619-26. PubMed ID: 25265172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eulerian-Lagrangian method for simulation of cloud cavitation.
    Maeda K; Colonius T
    J Comput Phys; 2018 Oct; 371():994-1017. PubMed ID: 30739952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bubble cloud characteristics and ablation efficiency in dual-frequency intrinsic threshold histotripsy.
    Edsall C; Huynh L; Hall TL; Vlaisavljevich E
    Phys Med Biol; 2023 Nov; 68(22):. PubMed ID: 37797649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppressing bubble shielding effect in shock wave lithotripsy by low intensity pulsed ultrasound.
    Wang JC; Zhou Y
    Ultrasonics; 2015 Jan; 55():65-74. PubMed ID: 25173067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field.
    Chen H; Li X; Wan M
    Ultrason Sonochem; 2006 Sep; 13(6):480-6. PubMed ID: 16571378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of the dynamics of a boiling vapour bubble using pressure-modulated high intensity focused ultrasound without the shock scattering effect: A first proof-of-concept study.
    Pahk KJ
    Ultrason Sonochem; 2021 Sep; 77():105699. PubMed ID: 34371476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High intensity focused ultrasound lithotripsy with cavitating microbubbles.
    Yoshizawa S; Ikeda T; Ito A; Ota R; Takagi S; Matsumoto Y
    Med Biol Eng Comput; 2009 Aug; 47(8):851-60. PubMed ID: 19360448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histotripsy-induced cavitation cloud initiation thresholds in tissues of different mechanical properties.
    Vlaisavljevich E; Maxwell A; Warnez M; Johnsen E; Cain CA; Xu Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):341-52. PubMed ID: 24474139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro.
    Cleveland RO; Sapozhnikov OA; Bailey MR; Crum LA
    J Acoust Soc Am; 2000 Mar; 107(3):1745-58. PubMed ID: 10738826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of Microbubble-Enhanced High-Intensity Focused Ultrasound.
    Gnanaskandan A; Hsiao CT; Chahine G
    Ultrasound Med Biol; 2019 Jul; 45(7):1743-1761. PubMed ID: 30982546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bubble Cloud Characteristics and Ablation Efficiency in Dual-Frequency Intrinsic Threshold Histotripsy.
    Edsall C; Huynh L; Hall T; Vlaisavljevich E
    ArXiv; 2023 Jul; ():. PubMed ID: 37461413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic Methods for Increasing the Cavitation Initiation Pressure Threshold.
    Alavi Tamaddoni H; Duryea AP; Vlaisavljevich E; Xu Z; Hall TL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2012-2019. PubMed ID: 30176587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.