These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 32612818)

  • 1. Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics.
    Baffou G; Bordacchini I; Baldi A; Quidant R
    Light Sci Appl; 2020; 9():108. PubMed ID: 32612818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying Photothermal and Hot Charge Carrier Effects in Plasmon-Driven Nanoparticle Syntheses.
    Kamarudheen R; Castellanos GW; Kamp LPJ; Clercx HJH; Baldi A
    ACS Nano; 2018 Aug; 12(8):8447-8455. PubMed ID: 30071160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures.
    Zhan C; Liu BW; Huang YF; Hu S; Ren B; Moskovits M; Tian ZQ
    Nat Commun; 2019 Jun; 10(1):2671. PubMed ID: 31209216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular plasmonics for biology and nanomedicine.
    Zheng YB; Kiraly B; Weiss PS; Huang TJ
    Nanomedicine (Lond); 2012 May; 7(5):751-70. PubMed ID: 22630155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoupling Plasmonic Hot Carrier from Thermal Catalysis via Electrode Engineering.
    Sekar P; Bericat-Vadell R; Patehebieke Y; Broqvist P; Wallentin CJ; Görlin M; Sá J
    Nano Lett; 2024 Jul; 24(28):8619-8625. PubMed ID: 38973705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced photoconversion performance of NdVO
    Chang M; Wang M; Shu M; Zhao Y; Ding B; Huang S; Hou Z; Han G; Lin J
    Acta Biomater; 2019 Nov; 99():295-306. PubMed ID: 31437636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical Hydrogen Nanothermometry of Plasmonic Nanoparticles under Illumination.
    Tiburski C; Nugroho FAA; Langhammer C
    ACS Nano; 2022 Apr; 16(4):6233-6243. PubMed ID: 35343680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Magnesium Nanoparticles Are Efficient Nanoheaters.
    West CA; Lomonosov V; Pehlivan ZS; Ringe E
    Nano Lett; 2023 Dec; 23(23):10964-10970. PubMed ID: 38011145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures.
    Linic S; Chavez S; Elias R
    Nat Mater; 2021 Jul; 20(7):916-924. PubMed ID: 33398116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast Nanoscale Raman Thermometry Proves Heating Is Not a Primary Mechanism for Plasmon-Driven Photocatalysis.
    Keller EL; Frontiera RR
    ACS Nano; 2018 Jun; 12(6):5848-5855. PubMed ID: 29883086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon-Enhanced Catalysis: Distinguishing Thermal and Nonthermal Effects.
    Zhang X; Li X; Reish ME; Zhang D; Su NQ; Gutiérrez Y; Moreno F; Yang W; Everitt HO; Liu J
    Nano Lett; 2018 Mar; 18(3):1714-1723. PubMed ID: 29438619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal effects - an alternative mechanism for plasmon-assisted photocatalysis.
    Dubi Y; Un IW; Sivan Y
    Chem Sci; 2020 Apr; 11(19):5017-5027. PubMed ID: 34122958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying Ultrafast Energy Transfer from Plasmonic Hot Carriers for Pulsed Photocatalysis on Nanostructures.
    Schirato A; Sanders SK; Proietti Zaccaria R; Nordlander P; Della Valle G; Alabastri A
    ACS Nano; 2024 Jul; 18(29):18933-18947. PubMed ID: 38990155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding Chemical and Physical Processes Driving Plasmonic Photocatalysis Using Surface-Enhanced Raman Spectroscopies.
    Warkentin CL; Yu Z; Sarkar A; Frontiera RR
    Acc Chem Res; 2021 May; 54(10):2457-2466. PubMed ID: 33957039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-Driven Photocatalysis Leads to Products Known from E-beam and X-ray-Induced Surface Chemistry.
    Szczerbiński J; Gyr L; Kaeslin J; Zenobi R
    Nano Lett; 2018 Nov; 18(11):6740-6749. PubMed ID: 30277787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast Thermal Imprinting of Plasmonic Hotspots.
    Askes SHC; Garnett EC
    Adv Mater; 2021 Dec; 33(49):e2105192. PubMed ID: 34623711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single Particle Approaches to Plasmon-Driven Catalysis.
    Hamans RF; Kamarudheen R; Baldi A
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33260302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.