These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 32612930)

  • 1. Protein engineering strategies for microbial production of isoprenoids.
    Daletos G; Stephanopoulos G
    Metab Eng Commun; 2020 Dec; 11():e00129. PubMed ID: 32612930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of plant isoprenoids: perspectives for microbial engineering.
    Kirby J; Keasling JD
    Annu Rev Plant Biol; 2009; 60():335-55. PubMed ID: 19575586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eukaryotic microalgae as hosts for light-driven heterologous isoprenoid production.
    Lauersen KJ
    Planta; 2019 Jan; 249(1):155-180. PubMed ID: 30467629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opportunities and challenges for the sustainable production of structurally complex diterpenoids in recombinant microbial systems.
    Kemper K; Hirte M; Reinbold M; Fuchs M; Brück T
    Beilstein J Org Chem; 2017; 13():845-854. PubMed ID: 28546842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Strategies and Platforms for Industrial Isoprenoid Engineering.
    Daletos G; Katsimpouras C; Stephanopoulos G
    Trends Biotechnol; 2020 Jul; 38(7):811-822. PubMed ID: 32359971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic biology, combinatorial biosynthesis, and chemo‑enzymatic synthesis of isoprenoids.
    Malico AA; Calzini MA; Gayen AK; Williams GJ
    J Ind Microbiol Biotechnol; 2020 Oct; 47(9-10):675-702. PubMed ID: 32880770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering and synthetic biology approaches driving isoprenoid production in Escherichia coli.
    Wang C; Zada B; Wei G; Kim SW
    Bioresour Technol; 2017 Oct; 241():430-438. PubMed ID: 28599221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering strategies to overcome precursor limitations in isoprenoid biosynthesis.
    Zu Y; Prather KL; Stephanopoulos G
    Curr Opin Biotechnol; 2020 Dec; 66():171-178. PubMed ID: 32853882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering for the microbial production of isoprenoids: Carotenoids and isoprenoid-based biofuels.
    Niu FX; Lu Q; Bu YF; Liu JZ
    Synth Syst Biotechnol; 2017 Sep; 2(3):167-175. PubMed ID: 29318197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis and engineering of isoprenoid small molecules.
    Withers ST; Keasling JD
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):980-90. PubMed ID: 17115212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From flavors and pharmaceuticals to advanced biofuels: production of isoprenoids in Saccharomyces cerevisiae.
    Tippmann S; Chen Y; Siewers V; Nielsen J
    Biotechnol J; 2013 Dec; 8(12):1435-44. PubMed ID: 24227704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories.
    Li M; Hou F; Wu T; Jiang X; Li F; Liu H; Xian M; Zhang H
    Nat Prod Rep; 2020 Jan; 37(1):80-99. PubMed ID: 31073570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isoprenoid-Based Biofuels: Homologous Expression and Heterologous Expression in Prokaryotes.
    Phulara SC; Chaturvedi P; Gupta P
    Appl Environ Microbiol; 2016 Oct; 82(19):5730-40. PubMed ID: 27422837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies of isoprenoids production in engineered bacteria.
    Li Y; Wang G
    J Appl Microbiol; 2016 Oct; 121(4):932-40. PubMed ID: 27428054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering for isoprenoid-based biofuel production.
    Gupta P; Phulara SC
    J Appl Microbiol; 2015 Sep; 119(3):605-19. PubMed ID: 26095690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocysti s sp. PCC 6803.
    Lin PC; Saha R; Zhang F; Pakrasi HB
    Sci Rep; 2017 Dec; 7(1):17503. PubMed ID: 29235513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversifying Isoprenoid Platforms
    Carruthers DN; Lee TS
    Front Microbiol; 2021; 12():791089. PubMed ID: 34925299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria.
    Choi SY; Lee HJ; Choi J; Kim J; Sim SJ; Um Y; Kim Y; Lee TS; Keasling JD; Woo HM
    Biotechnol Biofuels; 2016; 9():202. PubMed ID: 27688805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioprocess engineering for microbial synthesis and conversion of isoprenoids.
    Schewe H; Mirata MA; Schrader J
    Adv Biochem Eng Biotechnol; 2015; 148():251-86. PubMed ID: 25893480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of protein engineering in the microbial synthesis of plant triterpenoids.
    Luo Y; Jiang Y; Chen L; Li C; Wang Y
    Synth Syst Biotechnol; 2023 Mar; 8(1):20-32. PubMed ID: 36381964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.