These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32613101)

  • 1. Towards bio-inspired robots for underground and surface exploration in planetary environments: An overview and novel developments inspired in sand-swimmers.
    Lopez-Arreguin AJR; Montenegro S
    Heliyon; 2020 Jun; 6(6):e04148. PubMed ID: 32613101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming.
    Maladen RD; Ding Y; Umbanhowar PB; Kamor A; Goldman DI
    J R Soc Interface; 2011 Sep; 8(62):1332-45. PubMed ID: 21378020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locomotor benefits of being a slender and slick sand swimmer.
    Sharpe SS; Koehler SA; Kuckuk RM; Serrano M; Vela PA; Mendelson J; Goldman DI
    J Exp Biol; 2015 Feb; 218(Pt 3):440-50. PubMed ID: 25524983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a special rigid wheel for traversing loose soil.
    Elsheikh MA
    Sci Rep; 2023 Jan; 13(1):171. PubMed ID: 36599910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of the advancing neuromechanical phase in a resistive force dominated medium.
    Ding Y; Sharpe SS; Wiesenfeld K; Goldman DI
    Proc Natl Acad Sci U S A; 2013 Jun; 110(25):10123-8. PubMed ID: 23733931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Undulatory swimming in sand: subsurface locomotion of the sandfish lizard.
    Maladen RD; Ding Y; Li C; Goldman DI
    Science; 2009 Jul; 325(5938):314-8. PubMed ID: 19608917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental interaction influences muscle activation strategy during sand-swimming in the sandfish lizard Scincus scincus.
    Sharpe SS; Ding Y; Goldman DI
    J Exp Biol; 2013 Jan; 216(Pt 2):260-74. PubMed ID: 23255193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinated control of slip ratio for wheeled mobile robots climbing loose sloped terrain.
    Li Z; Wang Y
    ScientificWorldJournal; 2014; 2014():396382. PubMed ID: 25276849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanics of undulatory swimming in a frictional fluid.
    Ding Y; Sharpe SS; Masse A; Goldman DI
    PLoS Comput Biol; 2012; 8(12):e1002810. PubMed ID: 23300407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Locomotion of arthropods in aquatic environment and their applications in robotics.
    Kwak B; Bae J
    Bioinspir Biomim; 2018 May; 13(4):041002. PubMed ID: 29508773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robotics-inspired biology.
    Gravish N; Lauder GV
    J Exp Biol; 2018 Mar; 221(Pt 7):. PubMed ID: 29599417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A toe-inspired rigid-flexible coupling wheel design method for improving the terrain adaptability of a sewer robot.
    Zhang J; Chen X; Shen W; Song J; Zheng Y
    Bioinspir Biomim; 2024 May; 19(4):. PubMed ID: 38648793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of slip rate-dependent traversability for path planning of wheeled mobile robot in sandy terrain.
    Sakayori G; Ishigami G
    Front Robot AI; 2024; 11():1320261. PubMed ID: 38332951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Principles of appendage design in robots and animals determining terradynamic performance on flowable ground.
    Qian F; Zhang T; Korff W; Umbanhowar PB; Full RJ; Goldman DI
    Bioinspir Biomim; 2015 Oct; 10(5):056014. PubMed ID: 26448267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surprising simplicities and syntheses in limbless self-propulsion in sand.
    Astley HC; Mendelson JR; Dai J; Gong C; Chong B; Rieser JM; Schiebel PE; Sharpe SS; Hatton RL; Choset H; Goldman DI
    J Exp Biol; 2020 Feb; 223(Pt 5):. PubMed ID: 32111654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor.
    Curet OM; Patankar NA; Lauder GV; MacIver MA
    Bioinspir Biomim; 2011 Jun; 6(2):026004. PubMed ID: 21474864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scientific exploration of challenging planetary analog environments with a team of legged robots.
    Arm P; Waibel G; Preisig J; Tuna T; Zhou R; Bickel V; Ligeza G; Miki T; Kehl F; Kolvenbach H; Hutter M
    Sci Robot; 2023 Jul; 8(80):eade9548. PubMed ID: 37436970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Training mechanical engineering students to utilize biological inspiration during product development.
    Bruck HA; Gershon AL; Golden I; Gupta SK; Gyger LS; Magrab EB; Spranklin BW
    Bioinspir Biomim; 2007 Dec; 2(4):S198-209. PubMed ID: 18037728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibration-Based Recognition of Wheel-Terrain Interaction for Terramechanics Model Selection and Terrain Parameter Identification for Lugged-Wheel Planetary Rovers.
    Lv F; Li N; Gao H; Ding L; Deng Z; Yu H; Liu Z
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.