BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32613358)

  • 1. Mixed-reality view of cardiac specimens: a new approach to understanding complex intracardiac congenital lesions.
    Kang SL; Shkumat N; Dragulescu A; Guerra V; Padfield N; Krutikov K; Chiasson DA; Chaturvedi RR; Yoo SJ; Benson LN
    Pediatr Radiol; 2020 Oct; 50(11):1610-1616. PubMed ID: 32613358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixed reality holograms for heart surgery planning: first user experience in congenital heart disease.
    Brun H; Bugge RAB; Suther LKR; Birkeland S; Kumar R; Pelanis E; Elle OJ
    Eur Heart J Cardiovasc Imaging; 2019 Aug; 20(8):883-888. PubMed ID: 30534951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced Medical Use of Three-Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three-Dimensional Printing.
    Goo HW; Park SJ; Yoo SJ
    Korean J Radiol; 2020 Feb; 21(2):133-145. PubMed ID: 31997589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical Applications of Mixed Reality and 3D Printing in Congenital Heart Disease.
    Lau I; Gupta A; Ihdayhid A; Sun Z
    Biomolecules; 2022 Oct; 12(11):. PubMed ID: 36358899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac fusion and complex congenital cardiac defects in thoracopagus twins: diagnostic value of cardiac CT.
    Goo HW; Park JJ; Kim EA; Won HS
    Pediatr Radiol; 2014 Sep; 44(9):1169-74. PubMed ID: 24687619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time three dimensional CT and MRI to guide interventions for congenital heart disease and acquired pulmonary vein stenosis.
    Suntharos P; Setser RM; Bradley-Skelton S; Prieto LR
    Int J Cardiovasc Imaging; 2017 Oct; 33(10):1619-1626. PubMed ID: 28455631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moving beyond two-dimensional screens to interactive three-dimensional visualization in congenital heart disease.
    Byl JL; Sholler R; Gosnell JM; Samuel BP; Vettukattil JJ
    Int J Cardiovasc Imaging; 2020 Aug; 36(8):1567-1573. PubMed ID: 32335820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Four-dimensional virtual reality cine cardiac models using free open-source software.
    Priya S; Nagpal P
    Pediatr Radiol; 2020 Oct; 50(11):1617-1623. PubMed ID: 32681236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pediatric 320-row cardiac computed tomography using electrocardiogram-gated model-based full iterative reconstruction.
    Shirota G; Maeda E; Namiki Y; Bari R; Ino K; Torigoe R; Abe O
    Pediatr Radiol; 2017 Oct; 47(11):1463-1470. PubMed ID: 28667349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semiautomatic three-dimensional CT ventricular volumetry in patients with congenital heart disease: agreement between two methods with different user interaction.
    Goo HW; Park SH
    Int J Cardiovasc Imaging; 2015 Dec; 31 Suppl 2():223-32. PubMed ID: 26319216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computed Tomography in Congenital Heart Disease: Clinical Applications and Technical Considerations.
    Kulkarni A; Hsu HH; Ou P; Kutty S
    Echocardiography; 2016 Apr; 33(4):629-40. PubMed ID: 26670095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utility of Low-dose High-pitch Scanning for Pediatric Cardiac Computed Tomographic Imaging.
    Long CM; Long SS; Johnson PT; Mahesh M; Fishman EK; Zimmerman SL
    J Thorac Imaging; 2015 Jul; 30(4):W36-40. PubMed ID: 25629579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using 3D Physical Modeling to Plan Surgical Corrections of Complex Congenital Heart Defects.
    Vodiskar J; Kütting M; Steinseifer U; Vazquez-Jimenez JF; Sonntag SJ
    Thorac Cardiovasc Surg; 2017 Jan; 65(1):31-35. PubMed ID: 27177266
    [No Abstract]   [Full Text] [Related]  

  • 14. Visualization of 3D Models Through Virtual Reality in the Planning of Congenital Cardiothoracic Anomalies Correction: An Initial Experience.
    Ayerbe VMC; Morales MLV; Rojas CJL; Cortés MLA
    World J Pediatr Congenit Heart Surg; 2020 Sep; 11(5):627-629. PubMed ID: 32853059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Normal and pathological NCAT image and phantom data based on physiologically realistic left ventricle finite-element models.
    Veress AI; Segars WP; Weiss JA; Tsui BM; Gullberg GT
    IEEE Trans Med Imaging; 2006 Dec; 25(12):1604-16. PubMed ID: 17167995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of the stereoscopic virtual reality display system for the detection and characterization of intracranial aneurysms: A Icomparison with conventional computed tomography workstation and 3D rotational angiography.
    Liu X; Tao H; Xiao X; Guo B; Xu S; Sun N; Li M; Xie L; Wu C
    Clin Neurol Neurosurg; 2018 Jul; 170():93-98. PubMed ID: 29753884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonrigid registration-based coronary artery motion correction for cardiac computed tomography.
    Bhagalia R; Pack JD; Miller JV; Iatrou M
    Med Phys; 2012 Jul; 39(7):4245-54. PubMed ID: 22830758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac motion correction based on partial angle reconstructed images in x-ray CT.
    Kim S; Chang Y; Ra JB
    Med Phys; 2015 May; 42(5):2560-71. PubMed ID: 25979048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmental analysis of congenital heart disease: putting the "puzzle" together with computed tomography.
    Bierhals AJ; Rossini S; Woodard PK; Javidan-Nejad C; Billadello JJ; Bhalla S; Gutierrez FR
    Int J Cardiovasc Imaging; 2014 Aug; 30(6):1161-72. PubMed ID: 24816993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 64-row-MDCT evaluation of postoperative congenital heart disease in children: review of technique and imaging findings.
    Sunidja AP; Prabhu SP; Lee EY; Sena L
    Semin Roentgenol; 2012 Jan; 47(1):66-78. PubMed ID: 22166232
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.