These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 3261341)

  • 1. Oxygen consumption of single muscle fibres of Rana temporaria and Xenopus laevis at 20 degrees C.
    Elzinga G; van der Laarse WJ
    J Physiol; 1988 May; 399():405-18. PubMed ID: 3261341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum rate of oxygen consumption and quantitative histochemistry of succinate dehydrogenase in single muscle fibres of Xenopus laevis.
    van der Laarse WJ; Diegenbach PC; Elzinga G
    J Muscle Res Cell Motil; 1989 Jun; 10(3):221-8. PubMed ID: 2760192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP formation and ATP hydrolysis during fatiguing, intermittent stimulation of different types of single muscle fibres from Xenopus laevis.
    Nagesser AS; Van der Laarse WJ; Elzinga G
    J Muscle Res Cell Motil; 1993 Dec; 14(6):608-18. PubMed ID: 8126221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen uptake of frog skeletal muscle fibres following tetanic contractions at 18 degrees C.
    Elzinga G; Langewouters GJ; Westerhof N; Wiechmann AH
    J Physiol; 1984 Jan; 346():365-77. PubMed ID: 6607988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The force-velocity relation of isolated twitch and slow muscle fibres of Xenopus laevis.
    Lännergren J
    J Physiol; 1978 Oct; 283():501-21. PubMed ID: 722588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADH content in type I and type II human muscle fibres after dynamic exercise.
    Ren JM; Henriksson J; Katz A; Sahlin K
    Biochem J; 1988 Apr; 251(1):183-7. PubMed ID: 3390152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Twitch characteristics and energy metabolites of mature muscle fibres of Xenopus laevis in culture.
    Lee-De Groot MB; Van der Laarse WJ
    J Muscle Res Cell Motil; 1996 Aug; 17(4):439-48. PubMed ID: 8884599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of the distribution of muscle type in the tadpole tails of Xenopus laevis and Rana temporaria: an histological and ultrastructural study.
    Muntz L; Hornby JE; Dalooi MR
    Tissue Cell; 1989; 21(5):773-81. PubMed ID: 2617517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactate efflux from fatigued fast-twitch muscle fibres of Xenopus laevis under various extracellular conditions.
    Nagesser AS; van der Laarse WJ; Elzinga G
    J Physiol; 1994 Nov; 481 ( Pt 1)(Pt 1):139-47. PubMed ID: 7853236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of tension decline in different types of fatigue-resistant skeletal muscle fibres of the frog. Low extracellular calcium effects.
    Radzyukevich T; Lipská E; Pavelková J; Zacharová D
    Gen Physiol Biophys; 1993 Oct; 12(5):473-90. PubMed ID: 8181694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-off asymmetries in oxygen consumption kinetics of single Xenopus laevis skeletal muscle fibres suggest higher-order control.
    Wüst RC; van der Laarse WJ; Rossiter HB
    J Physiol; 2013 Feb; 591(3):731-44. PubMed ID: 23165768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histochemical and physiological properties of Rana temporaria tibialis anterior and lumbricalis IV muscle fibres.
    Iaizzo PA
    J Muscle Res Cell Motil; 1990 Aug; 11(4):281-92. PubMed ID: 2254438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable maintenance heat rate and contractile properties of different single muscle fibres from Xenopus laevis at 20 degrees C.
    Elzinga G; Lännergren J; Stienen GJ
    J Physiol; 1987 Dec; 393():399-412. PubMed ID: 3446801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen-dependence of metabolic rate in the muscles of craniates.
    Forgan LG; Forster ME
    J Comp Physiol B; 2010 Jun; 180(5):715-29. PubMed ID: 20198373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force and myosin content variation in isolated intact single muscle fibres from Rana temporaria.
    Buschman HP; van der Laarse WJ; Stienen GJ; Elzinga G
    Pflugers Arch; 1997 Jul; 434(3):332-4. PubMed ID: 9178634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contractile properties of two varieties of twitch muscle fibres in Xenopus laevis.
    Lännergren J; Lindblom P; Johansson B
    Acta Physiol Scand; 1982 Apr; 114(4):523-35. PubMed ID: 7136781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium channels in skeletal muscle fibres of the frog.
    Hencek M; Zacharová D; Zachar J
    Biomed Biochim Acta; 1989; 48(5-6):S345-9. PubMed ID: 2547359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myofibrillar fatigue versus failure of activation during repetitive stimulation of frog muscle fibres.
    Edman KA; Lou F
    J Physiol; 1992 Nov; 457():655-73. PubMed ID: 1297847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Some properties of the contractile system and sarcoplasmic reticulum of skinned slow fibres from Xenopus muscle.
    Horiuti K
    J Physiol; 1986 Apr; 373():1-23. PubMed ID: 2427691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-stimulated myofibrillar ATPase activity correlates with shortening velocity of muscle fibres in Xenopus laevis.
    van der Laarse WJ; Diegenbach PC; Hemminga MA
    Histochem J; 1986 Sep; 18(9):487-96. PubMed ID: 2946649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.