BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 32613828)

  • 1. Exosome Purification and Analysis Using a Facile Microfluidic Hydrodynamic Trapping Device.
    Tayebi M; Zhou Y; Tripathi P; Chandramohanadas R; Ai Y
    Anal Chem; 2020 Aug; 92(15):10733-10742. PubMed ID: 32613828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic Flows.
    Liu C; Guo J; Tian F; Yang N; Yan F; Ding Y; Wei J; Hu G; Nie G; Sun J
    ACS Nano; 2017 Jul; 11(7):6968-6976. PubMed ID: 28679045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic affinity separation chip for selective capture and release of label-free ovarian cancer exosomes.
    Hisey CL; Dorayappan KDP; Cohn DE; Selvendiran K; Hansford DJ
    Lab Chip; 2018 Oct; 18(20):3144-3153. PubMed ID: 30191215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes.
    Kanwar SS; Dunlay CJ; Simeone DM; Nagrath S
    Lab Chip; 2014 Jun; 14(11):1891-900. PubMed ID: 24722878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Approaches for Affinity-Based Exosome Separation.
    Theel EK; Schwaminger SP
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and Profiling of Circulating Tumor-Associated Exosomes Using Extracellular Vesicular Lipid-Protein Binding Affinity Based Microfluidic Device.
    Kang YT; Purcell E; Palacios-Rolston C; Lo TW; Ramnath N; Jolly S; Nagrath S
    Small; 2019 Nov; 15(47):e1903600. PubMed ID: 31588683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A double tangential flow filtration-based microfluidic device for highly efficient separation and enrichment of exosomes.
    Hua X; Zhu Q; Liu Y; Zhou S; Huang P; Li Q; Liu S
    Anal Chim Acta; 2023 Jun; 1258():341160. PubMed ID: 37087290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic-based hydrodynamic trap for single particles.
    Johnson-Chavarria EM; Tanyeri M; Schroeder CM
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exosome separation using microfluidic systems: size-based, immunoaffinity-based and dynamic methodologies.
    Yang F; Liao X; Tian Y; Li G
    Biotechnol J; 2017 Apr; 12(4):. PubMed ID: 28166394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of B-cell surface antigens in subpopulations of exosomes released from B-cell lymphoma cells.
    Oksvold MP; Kullmann A; Forfang L; Kierulf B; Li M; Brech A; Vlassov AV; Smeland EB; Neurauter A; Pedersen KW
    Clin Ther; 2014 Jun; 36(6):847-862.e1. PubMed ID: 24952935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches.
    Zarovni N; Corrado A; Guazzi P; Zocco D; Lari E; Radano G; Muhhina J; Fondelli C; Gavrilova J; Chiesi A
    Methods; 2015 Oct; 87():46-58. PubMed ID: 26044649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microsphere mediated exosome isolation and ultra-sensitive detection on a dielectrophoresis integrated microfluidic device.
    Zhao W; Zhang L; Ye Y; Li Y; Luan X; Liu J; Cheng J; Zhao Y; Li M; Huang C
    Analyst; 2021 Sep; 146(19):5962-5972. PubMed ID: 34494041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic compartments with sensing microbeads for dynamic monitoring of cytokine and exosome release from single cells.
    Son KJ; Rahimian A; Shin DS; Siltanen C; Patel T; Revzin A
    Analyst; 2016 Jan; 141(2):679-88. PubMed ID: 26525740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods.
    Greening DW; Xu R; Ji H; Tauro BJ; Simpson RJ
    Methods Mol Biol; 2015; 1295():179-209. PubMed ID: 25820723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic bead-based isolation of exosomes.
    Oksvold MP; Neurauter A; Pedersen KW
    Methods Mol Biol; 2015; 1218():465-81. PubMed ID: 25319668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Yin and Yang of exosome isolation methods: conventional practice, microfluidics, and commercial kits.
    Shirejini SZ; Inci F
    Biotechnol Adv; 2022; 54():107814. PubMed ID: 34389465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic-Based Microfluidic Device for On-Chip Isolation and Detection of Tumor-Derived Exosomes.
    Xu H; Liao C; Zuo P; Liu Z; Ye BC
    Anal Chem; 2018 Nov; 90(22):13451-13458. PubMed ID: 30234974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Microfluidic strategies for separation and analysis of circulating exosomes].
    Chen W; Gan Z; Qin J
    Se Pu; 2021 Sep; 39(9):968-980. PubMed ID: 34486836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting exosomes specifically: a multiplexed device based on alternating current electrohydrodynamic induced nanoshearing.
    Vaidyanathan R; Naghibosadat M; Rauf S; Korbie D; Carrascosa LG; Shiddiky MJ; Trau M
    Anal Chem; 2014 Nov; 86(22):11125-32. PubMed ID: 25324037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.