BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 32613828)

  • 21. An integrated lab-on-a-chip platform for pre-concentration and detection of colorectal cancer exosomes using anti-CD63 aptamer as a recognition element.
    Chinnappan R; Ramadan Q; Zourob M
    Biosens Bioelectron; 2023 Jan; 220():114856. PubMed ID: 36395728
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic device for the analysis of MDR cancerous cell-derived exosomes' response to nanotherapy.
    Qi R; Zhu G; Wang Y; Wu S; Li S; Zhang D; Bu Y; Bhave G; Han R; Liu X
    Biomed Microdevices; 2019 Mar; 21(2):35. PubMed ID: 30906967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification.
    Fang S; Tian H; Li X; Jin D; Li X; Kong J; Yang C; Yang X; Lu Y; Luo Y; Lin B; Niu W; Liu T
    PLoS One; 2017; 12(4):e0175050. PubMed ID: 28369094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct.
    Xu R; Greening DW; Rai A; Ji H; Simpson RJ
    Methods; 2015 Oct; 87():11-25. PubMed ID: 25890246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Continuous-flow label-free size fractionation of extracellular vesicles through electrothermal fluid rolls and dielectrophoresis synergistically integrated in a microfluidic device.
    Bu Y; Wang J; Ni S; Guo Y; Yobas L
    Lab Chip; 2023 May; 23(10):2421-2433. PubMed ID: 36951129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exosome isolation using nanostructures and microfluidic devices.
    Le MN; Fan ZH
    Biomed Mater; 2021 Feb; 16(2):022005. PubMed ID: 33477118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ExoPRIME: Solid-phase immunoisolation and OMICS analysis of surface-marker-specific exosomal subpopulations.
    Nwokwu CD; Ishraq Bari SM; Hutson KH; Brausell C; Nestorova GG
    Talanta; 2022 Jan; 236():122870. PubMed ID: 34635251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Extraction of exosome by gel electrophoresis microfluidic chip and determination of miRNA-21 in exosome of human plasma].
    Luo D; Ran F; Wu L; Zhang J; Ren F; Liu J; Zhang B; Chen Q
    Sheng Wu Gong Cheng Xue Bao; 2021 Feb; 37(2):663-672. PubMed ID: 33645164
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrodynamic resettability for a microfluidic particulate-based arraying system.
    Sochol RD; Dueck ME; Li S; Lee LP; Lin L
    Lab Chip; 2012 Dec; 12(23):5051-6. PubMed ID: 23042508
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic Platforms for the Isolation and Detection of Exosomes: A Brief Review.
    Raju D; Bathini S; Badilescu S; Ghosh A; Packirisamy M
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immunocapture-based ELISA to characterize and quantify exosomes in both cell culture supernatants and body fluids.
    Logozzi M; Di Raimo R; Mizzoni D; Fais S
    Methods Enzymol; 2020; 645():155-180. PubMed ID: 33565970
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acoustic Enrichment of Extracellular Vesicles from Biological Fluids.
    Ku A; Lim HC; Evander M; Lilja H; Laurell T; Scheding S; Ceder Y
    Anal Chem; 2018 Jul; 90(13):8011-8019. PubMed ID: 29806448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrically driven microfluidic platforms for exosome manipulation and characterization.
    Diaz-Armas GG; Cervantes-Gonzalez AP; Martinez-Duarte R; Perez-Gonzalez VH
    Electrophoresis; 2022 Jan; 43(1-2):327-339. PubMed ID: 34717000
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip.
    Zhang P; Zhou X; He M; Shang Y; Tetlow AL; Godwin AK; Zeng Y
    Nat Biomed Eng; 2019 Jun; 3(6):438-451. PubMed ID: 31123323
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Towards Microfluidic-Based Exosome Isolation and Detection for Tumor Therapy.
    Wang J; Ma P; Kim DH; Liu BF; Demirci U
    Nano Today; 2021 Apr; 37():. PubMed ID: 33777166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic approaches for isolation, detection, and characterization of extracellular vesicles: Current status and future directions.
    Gholizadeh S; Shehata Draz M; Zarghooni M; Sanati-Nezhad A; Ghavami S; Shafiee H; Akbari M
    Biosens Bioelectron; 2017 May; 91():588-605. PubMed ID: 28088752
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cancer Liquid Biopsy Using Integrated Microfluidic Exosome Analysis Platforms.
    Li G; Tang W; Yang F
    Biotechnol J; 2020 May; 15(5):e1900225. PubMed ID: 32032977
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated fluorescence quantification of extracellular vesicles collected from blood plasma using dielectrophoresis.
    Gustafson KT; Huynh KT; Heineck D; Bueno J; Modestino A; Kim S; Gower A; Armstrong R; Schutt CE; Ibsen SD
    Lab Chip; 2021 Apr; 21(7):1318-1332. PubMed ID: 33877235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a Microfluidic Device for Exosome Isolation in Point-of-Care Settings.
    Ramnauth N; Neubarth E; Makler-Disatham A; Sher M; Soini S; Merk V; Asghar W
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837121
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemically Edited Exosomes with Dual Ligand Purified by Microfluidic Device for Active Targeted Drug Delivery to Tumor Cells.
    Wang J; Li W; Zhang L; Ban L; Chen P; Du W; Feng X; Liu BF
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27441-27452. PubMed ID: 28762264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.