These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 32613858)
41. Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument. Carter JC; Angel SM; Lawrence-Snyder M; Scaffidi J; Whipple RE; Reynolds JG Appl Spectrosc; 2005 Jun; 59(6):769-75. PubMed ID: 16053543 [TBL] [Abstract][Full Text] [Related]
42. Stand-off Raman detection using dispersive and tunable filter based systems. Carter JC; Scaffidi J; Burnett S; Vasser B; Sharma SK; Angel SM Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2288-98. PubMed ID: 15967708 [TBL] [Abstract][Full Text] [Related]
43. Optimizing Data Reduction Procedures in Spatial Heterodyne Raman Spectroscopy with Applications to Planetary Surface Analogs. Egan MJ; Angel SM; Sharma SK Appl Spectrosc; 2018 Jun; 72(6):933-942. PubMed ID: 29381083 [TBL] [Abstract][Full Text] [Related]
44. Remote Sensing of Potential Biosignatures from Rocky, Liquid, or Icy (Exo)Planetary Surfaces. Poch O; Frey J; Roditi I; Pommerol A; Jost B; Thomas N Astrobiology; 2017 Mar; 17(3):231-252. PubMed ID: 28282216 [TBL] [Abstract][Full Text] [Related]
45. Evaluation of portable Raman instrumentation for identification of β-carotene and mellitic acid in two-component mixtures with halite. Vítek P; Edwards HG; Jehlička J; Cox R Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 80(1):32-5. PubMed ID: 21296611 [TBL] [Abstract][Full Text] [Related]
46. Half-Inch Monolithic Spatial Heterodyne Raman Spectrometer: A Study of Polarized Raman Spectra of Organic Liquids and Instrumental Performance. Kelly EM; Egan MJ; Colόn A; Angel SM; Sharma SK Appl Spectrosc; 2024 Oct; 78(10):1062-1070. PubMed ID: 38853620 [TBL] [Abstract][Full Text] [Related]
47. High-sensitivity Raman spectrometer to study pristine and irradiated interstellar ice analogs. Bennett CJ; Brotton SJ; Jones BM; Misra AK; Sharma SK; Kaiser RI Anal Chem; 2013 Jun; 85(12):5659-65. PubMed ID: 23662702 [TBL] [Abstract][Full Text] [Related]
48. Single-Grating Monolithic Spatial Heterodyne Raman Spectrometer: An Investigation on the Effects of Detector Selection. Kelly EM; Egan MJ; Colόn A; Angel SM; Sharma SK Appl Spectrosc; 2023 Dec; 77(12):1411-1423. PubMed ID: 37801484 [TBL] [Abstract][Full Text] [Related]
49. Critical evaluation of portable Raman spectrometers: From rock outcrops and planetary analogs to cultural heritage - A review. Jehlička J; Culka A Anal Chim Acta; 2022 May; 1209():339027. PubMed ID: 35569857 [TBL] [Abstract][Full Text] [Related]
50. Analysis of Arctic ices by remote Raman spectroscopy. Rull F; Vegas A; Sansano A; Sobron P Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 80(1):148-55. PubMed ID: 21606001 [TBL] [Abstract][Full Text] [Related]
51. Combined remote LIBS and Raman spectroscopy at 8.6m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust. Sharma SK; Misra AK; Lucey PG; Wiens RC; Clegg SM Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1036-45. PubMed ID: 17723318 [TBL] [Abstract][Full Text] [Related]
52. Pulsed remote Raman system for daytime measurements of mineral spectra. Misra AK; Sharma SK; Chio CH; Lucey PG; Lienert B Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2281-7. PubMed ID: 16029850 [TBL] [Abstract][Full Text] [Related]
53. A hyphenated echelle LIBS-Raman system for multi-purpose applications. Muhammed Shameem KM; Dhanada VS; Unnikrishnan VK; George SD; Kartha VB; Santhosh C Rev Sci Instrum; 2018 Jul; 89(7):073108. PubMed ID: 30068097 [TBL] [Abstract][Full Text] [Related]
54. Remote Raman spectra of benzene obtained from 217 meters using a single 532 nm laser pulse. Chen T; Madey JM; Price FM; Sharma SK; Lienert B Appl Spectrosc; 2007 Jun; 61(6):624-9. PubMed ID: 17650374 [TBL] [Abstract][Full Text] [Related]
55. On the Habitability of Desert Varnish: A Combined Study by Micro-Raman Spectroscopy, X-ray Diffraction, and Methylated Pyrolysis-Gas Chromatography-Mass Spectrometry. Malherbe C; Hutchinson IB; Ingley R; Boom A; Carr AS; Edwards H; Vertruyen B; Gilbert B; Eppe G Astrobiology; 2017 Nov; 17(11):1123-1137. PubMed ID: 29039682 [TBL] [Abstract][Full Text] [Related]
56. Next generation laser-based standoff spectroscopy techniques for Mars exploration. Gasda PJ; Acosta-Maeda TE; Lucey PG; Misra AK; Sharma SK; Taylor GJ Appl Spectrosc; 2015; 69(2):173-92. PubMed ID: 25587811 [TBL] [Abstract][Full Text] [Related]
57. Analytical Chemistry Throughout This Solar System. Seaton KM; Cable ML; Stockton AM Annu Rev Anal Chem (Palo Alto Calif); 2022 Jun; 15(1):197-219. PubMed ID: 35300527 [TBL] [Abstract][Full Text] [Related]
58. OrganiCam: a lightweight time-resolved laser-induced luminescence imager and Raman spectrometer for planetary organic material characterization. Gasda PJ; Wiens RC; Reyes-Newell A; Ganguly K; Newell RT; Peterson C; Sandoval B; Ott L; Adikari S; Voit S; Clegg SM; Misra AK; Acosta-Maeda TE; Quinn H; Sharma SK; Dale M; Love SP; Maurice S Appl Opt; 2021 May; 60(13):3753-3763. PubMed ID: 33983308 [TBL] [Abstract][Full Text] [Related]
59. Time-resolved remote Raman study of minerals under supercritical CO2 and high temperatures relevant to Venus exploration. Sharma SK; Misra AK; Clegg SM; Barefield JE; Wiens RC; Acosta T Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1922):3167-91. PubMed ID: 20529953 [TBL] [Abstract][Full Text] [Related]