BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32613973)

  • 1. Hydrogen bonding of ionic liquids in the groove region of DNA controls the extent of its stabilization: synthesis, spectroscopic and simulation studies.
    Sarkar S; Rajdev P; Singh PC
    Phys Chem Chem Phys; 2020 Jul; 22(27):15582-15591. PubMed ID: 32613973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alteration of the groove width of DNA induced by the multimodal hydrogen bonding of denaturants with DNA bases in its grooves affects their stability.
    Sarkar S; Singh PC
    Biochim Biophys Acta Gen Subj; 2020 Mar; 1864(3):129498. PubMed ID: 31785326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The combined action of cations and anions of ionic liquids modulates the formation and stability of G-quadruplex DNA.
    Sarkar S; Singh PC
    Phys Chem Chem Phys; 2021 Nov; 23(42):24497-24504. PubMed ID: 34700329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence specific hydrogen bond of DNA with denaturants affects its stability: Spectroscopic and simulation studies.
    Sarkar S; Singh PC
    Biochim Biophys Acta Gen Subj; 2021 Jan; 1865(1):129735. PubMed ID: 32946929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Groove binding mechanism of ionic liquids: a key factor in long-term stability of DNA in hydrated ionic liquids?
    Chandran A; Ghoshdastidar D; Senapati S
    J Am Chem Soc; 2012 Dec; 134(50):20330-9. PubMed ID: 23181803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divergent trend in density versus viscosity of ionic liquid/water mixtures: a molecular view from guanidinium ionic liquids.
    Singh AP; Gardas RL; Senapati S
    Phys Chem Chem Phys; 2015 Oct; 17(38):25037-48. PubMed ID: 26347332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodal Interactions of Dopamine Hydrochloride with the Groove Region of DNA: A Key Factor in the Enhanced Stability of DNA.
    Sarkar S; Chowdhury A; Singh PC
    J Phys Chem B; 2019 Dec; 123(50):10700-10708. PubMed ID: 31755715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anions of Ionic Liquids Are Important Players in the Rescue of DNA Damage.
    Sarkar S; Chandra Singh P
    J Phys Chem Lett; 2020 Dec; 11(23):10150-10156. PubMed ID: 33191753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward Greater DNA Stability by Leveraging the Proton-Donating Ability of Protic Ionic Liquids.
    Knanghat R; Senapati S
    J Phys Chem B; 2024 May; 128(18):4301-4314. PubMed ID: 38682809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Experimental and Molecular Dynamics Study of Red Fluorescent Protein mCherry in Novel Aqueous Amino Acid Ionic Liquids.
    Borrell KL; Cancglin C; Stinger BL; DeFrates KG; Caputo GA; Wu C; Vaden TD
    J Phys Chem B; 2017 May; 121(18):4823-4832. PubMed ID: 28425717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal Nanoparticles in Ionic Liquids.
    Wegner S; Janiak C
    Top Curr Chem (Cham); 2017 Aug; 375(4):65. PubMed ID: 28589266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultraviolet-Visible (UV-Vis) and Fluorescence Spectroscopic Investigation of the Interactions of Ionic Liquids and Catalase.
    Dong X; Fan Y; Yang P; Kong J; Li D; Miao J; Hua S; Hu C
    Appl Spectrosc; 2016 Nov; 70(11):1851-1860. PubMed ID: 27324424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term structural and chemical stability of DNA in hydrated ionic liquids.
    Vijayaraghavan R; Izgorodin A; Ganesh V; Surianarayanan M; MacFarlane DR
    Angew Chem Int Ed Engl; 2010 Feb; 49(9):1631-3. PubMed ID: 20108297
    [No Abstract]   [Full Text] [Related]  

  • 14. An insight into structure and stability of DNA in ionic liquids from molecular dynamics simulation and experimental studies.
    Jumbri K; Abdul Rahman MB; Abdulmalek E; Ahmad H; Micaelo NM
    Phys Chem Chem Phys; 2014 Jul; 16(27):14036-46. PubMed ID: 24901033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic Aspects of Fungicide-Induced DNA Damage: Spectroscopic and Molecular Dynamics Simulation Studies.
    Sarkar S; Singh PC
    J Phys Chem B; 2019 Oct; 123(41):8653-8661. PubMed ID: 31539252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces.
    Shankar A; Jagota A; Mittal J
    J Phys Chem B; 2012 Oct; 116(40):12088-94. PubMed ID: 22967176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of 7-deaza-2'-deoxyguanosine 2'-deoxycytidine base pairing in DNA.
    Ganguly M; Wang F; Kaushik M; Stone MP; Marky LA; Gold B
    Nucleic Acids Res; 2007; 35(18):6181-95. PubMed ID: 17855404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycine in 1-butyl-3-methylimidazolium acetate and trifluoroacetate ionic liquids: effect of fluorination and hydrogen bonding.
    Podgoršek A; Macchiagodena M; Ramondo F; Costa Gomes MF; Pádua AA
    Chemphyschem; 2012 May; 13(7):1753-63. PubMed ID: 22434786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA ligases ensure fidelity by interrogating minor groove contacts.
    Liu P; Burdzy A; Sowers LC
    Nucleic Acids Res; 2004; 32(15):4503-11. PubMed ID: 15328364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Stability of Proteins Solvated in Imidazolium-Based Ionic Liquids Studied with Replica Exchange Molecular Dynamics.
    Lim GS; Klähn M
    J Phys Chem B; 2018 Oct; 122(39):9274-9288. PubMed ID: 30192538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.