These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32613990)

  • 1. Implementation of ferroelectric materials in photocatalytic and photoelectrochemical water splitting.
    Li Y; Li J; Yang W; Wang X
    Nanoscale Horiz; 2020 Jul; 5(8):1174-1187. PubMed ID: 32613990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Piezotronics in Photo-Electrochemistry.
    Yu Y; Wang X
    Adv Mater; 2018 Oct; 30(43):e1800154. PubMed ID: 30009413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Enhancement of Charge Separation and Hole Transportation in a TiO
    Wu F; Yu Y; Yang H; German LN; Li Z; Chen J; Yang W; Huang L; Shi W; Wang L; Wang X
    Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28558165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferroelectric Polarization-Enhanced Photoelectrochemical Water Splitting in TiO2-BaTiO3 Core-Shell Nanowire Photoanodes.
    Yang W; Yu Y; Starr MB; Yin X; Li Z; Kvit A; Wang S; Zhao P; Wang X
    Nano Lett; 2015 Nov; 15(11):7574-80. PubMed ID: 26492362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Ferroelectric Materials-Based Photoelectrochemical Reaction.
    Yu L; Wang L; Dou Y; Zhang Y; Li P; Li J; Wei W
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of Doped SrTiO
    Singh S; Sangle AL; Wu T; Khare N; MacManus-Driscoll JL
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45683-45691. PubMed ID: 31710804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hole inversion layer at the BiVO4/Bi4V2O11 interface produces a high tunable photovoltage for water splitting.
    Dos Santos WS; Rodriguez M; Afonso AS; Mesquita JP; Nascimento LL; PatrocĂ­nio AO; Silva AC; Oliveira LC; Fabris JD; Pereira MC
    Sci Rep; 2016 Aug; 6():31406. PubMed ID: 27503274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Progress in LDH@Graphene and Analogous Heterostructures for Highly Active and Stable Photocatalytic and Photoelectrochemical Water Splitting.
    Nayak S; Parida K
    Chem Asian J; 2021 Aug; 16(16):2211-2248. PubMed ID: 34196114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable Photocatalytic Water Splitting by the Ferroelectric Switch in a 2D AgBiP
    Ju L; Shang J; Tang X; Kou L
    J Am Chem Soc; 2020 Jan; 142(3):1492-1500. PubMed ID: 31888324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward practical solar hydrogen production - an artificial photosynthetic leaf-to-farm challenge.
    Kim JH; Hansora D; Sharma P; Jang JW; Lee JS
    Chem Soc Rev; 2019 Apr; 48(7):1908-1971. PubMed ID: 30855624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllably Interfacing with Ferroelectric Layer: A Strategy for Enhancing Water Oxidation on Silicon by Surface Polarization.
    Cui W; Xia Z; Wu S; Chen F; Li Y; Sun B
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25601-7. PubMed ID: 25844486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induced dipole in vanadium-doped zinc oxide nanosheets and its effects on photoelectrochemical water splitting.
    Lee SM; Shin SH; Nah J; Lee MH
    Nanotechnology; 2017 Sep; 28(39):395403. PubMed ID: 28721942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particulate photocatalyst sheets for Z-scheme water splitting: advantages over powder suspension and photoelectrochemical systems and future challenges.
    Wang Q; Hisatomi T; Katayama M; Takata T; Minegishi T; Kudo A; Yamada T; Domen K
    Faraday Discuss; 2017 Apr; 197():491-504. PubMed ID: 28164191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition-Metal-Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review.
    Li D; Shi J; Li C
    Small; 2018 Jun; 14(23):e1704179. PubMed ID: 29575653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using hematite for photoelectrochemical water splitting: a review of current progress and challenges.
    Tamirat AG; Rick J; Dubale AA; Su WN; Hwang BJ
    Nanoscale Horiz; 2016 Jul; 1(4):243-267. PubMed ID: 32260645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoelectrochemical Water-Splitting Using CuO-Based Electrodes for Hydrogen Production: A Review.
    Siavash Moakhar R; Hosseini-Hosseinabad SM; Masudy-Panah S; Seza A; Jalali M; Fallah-Arani H; Dabir F; Gholipour S; Abdi Y; Bagheri-Hariri M; Riahi-Noori N; Lim YF; Hagfeldt A; Saliba M
    Adv Mater; 2021 Aug; 33(33):e2007285. PubMed ID: 34117806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General Characterization Methods for Photoelectrochemical Cells for Solar Water Splitting.
    Shi X; Cai L; Ma M; Zheng X; Park JH
    ChemSusChem; 2015 Oct; 8(19):3192-203. PubMed ID: 26365789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Ferroelectric Polarization to Achieve Efficient Charge Separation and Transfer in Particulate RuO
    Shah JH; Huang B; Idris AM; Liu Y; Malik AS; Hu W; Zhang Z; Han H; Li C
    Small; 2020 Nov; 16(44):e2003361. PubMed ID: 33048443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishing Interfacial Charge-Transfer Transitions on Ferroelectric Perovskites: An Efficient Route for Photoelectrochemical Bioanalysis.
    Zhang Q; Zhang L; Liu XN; Li Z; Li Z; Wu X; Wang GL; Zhao WW
    ACS Sens; 2020 Dec; 5(12):3827-3832. PubMed ID: 33315371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.