These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 32614093)

  • 1. Light Runs Across Iron Catalysts in Organic Transformations.
    Zhou WJ; Wu XD; Miao M; Wang ZH; Chen L; Shan SY; Cao GM; Yu DG
    Chemistry; 2020 Nov; 26(66):15052-15064. PubMed ID: 32614093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoredox Catalysis with Metal Complexes Made from Earth-Abundant Elements.
    Larsen CB; Wenger OS
    Chemistry; 2018 Feb; 24(9):2039-2058. PubMed ID: 28892199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes.
    Reiser O
    Acc Chem Res; 2016 Sep; 49(9):1990-6. PubMed ID: 27556932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of chiral-at-metal catalysts and their use in asymmetric photoredox chemistry.
    Ma J; Zhang X; Huang X; Luo S; Meggers E
    Nat Protoc; 2018 Apr; 13(4):605-632. PubMed ID: 29494576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is Iron the New Ruthenium?
    Wenger OS
    Chemistry; 2019 Apr; 25(24):6043-6052. PubMed ID: 30615242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron Photoredox Catalysis-Past, Present, and Future.
    de Groot LHM; Ilic A; Schwarz J; Wärnmark K
    J Am Chem Soc; 2023 May; 145(17):9369-9388. PubMed ID: 37079887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality.
    Zhang L; Meggers E
    Acc Chem Res; 2017 Feb; 50(2):320-330. PubMed ID: 28128920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visible-Light-Induced Homolysis of Earth-Abundant Metal-Substrate Complexes: A Complementary Activation Strategy in Photoredox Catalysis.
    Abderrazak Y; Bhattacharyya A; Reiser O
    Angew Chem Int Ed Engl; 2021 Sep; 60(39):21100-21115. PubMed ID: 33599363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Merging Visible Light Photoredox and Gold Catalysis.
    Hopkinson MN; Tlahuext-Aca A; Glorius F
    Acc Chem Res; 2016 Oct; 49(10):2261-2272. PubMed ID: 27610939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of visible-light-activated metal complexes and their use in photoredox/nickel dual catalysis.
    Kelly CB; Patel NR; Primer DN; Jouffroy M; Tellis JC; Molander GA
    Nat Protoc; 2017 Mar; 12(3):472-492. PubMed ID: 28151464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper's rapid ascent in visible-light photoredox catalysis.
    Hossain A; Bhattacharyya A; Reiser O
    Science; 2019 May; 364(6439):. PubMed ID: 31048464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic Utilization of α-Aminoalkyl Radicals and Related Species in Visible Light Photoredox Catalysis.
    Nakajima K; Miyake Y; Nishibayashi Y
    Acc Chem Res; 2016 Sep; 49(9):1946-56. PubMed ID: 27505299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery and characterization of an acridine radical photoreductant.
    MacKenzie IA; Wang L; Onuska NPR; Williams OF; Begam K; Moran AM; Dunietz BD; Nicewicz DA
    Nature; 2020 Apr; 580(7801):76-80. PubMed ID: 32238940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoinduced Ligand-to-Metal Charge Transfer in Base-Metal Catalysis.
    Treacy SM; Rovis T
    Synthesis (Stuttg); 2024 Jul; 56(13):1967-1978. PubMed ID: 38962497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts.
    Yu XY; Zhao QQ; Chen J; Xiao WJ; Chen JR
    Acc Chem Res; 2020 May; 53(5):1066-1083. PubMed ID: 32286794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acridinium-Based Photocatalysts: A Sustainable Option in Photoredox Catalysis.
    Joshi-Pangu A; Lévesque F; Roth HG; Oliver SF; Campeau LC; Nicewicz D; DiRocco DA
    J Org Chem; 2016 Aug; 81(16):7244-9. PubMed ID: 27454776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fe N-Heterocyclic Carbene Complexes as Promising Photosensitizers.
    Liu Y; Persson P; Sundström V; Wärnmark K
    Acc Chem Res; 2016 Aug; 49(8):1477-85. PubMed ID: 27455191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A General Copper-based Photoredox Catalyst for Organic Synthesis: Scope, Application in Natural Product Synthesis and Mechanistic Insights.
    Deldaele C; Michelet B; Baguia H; Kajouj S; Romero E; Moucheron C; Evano G
    Chimia (Aarau); 2018 Sep; 72(9):621-629. PubMed ID: 30257738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in visible-light-mediated functionalization of olefins and alkynes using copper catalysts.
    Ramani A; Desai B; Dholakiya BZ; Naveen T
    Chem Commun (Camb); 2022 Jul; 58(57):7850-7873. PubMed ID: 35770649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.