These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32614093)

  • 21. Naphthalene diimides with improved solubility for visible light photoredox catalysis.
    Reiß B; Wagenknecht HA
    Beilstein J Org Chem; 2019; 15():2043-2051. PubMed ID: 31501672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances in visible-light-mediated functionalization of olefins and alkynes using copper catalysts.
    Ramani A; Desai B; Dholakiya BZ; Naveen T
    Chem Commun (Camb); 2022 Jul; 58(57):7850-7873. PubMed ID: 35770649
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron-, Cobalt-, and Nickel-Catalyzed Asymmetric Transfer Hydrogenation and Asymmetric Hydrogenation of Ketones.
    Li YY; Yu SL; Shen WY; Gao JX
    Acc Chem Res; 2015 Sep; 48(9):2587-98. PubMed ID: 26301426
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A low-spin Fe(iii) complex with 100-ps ligand-to-metal charge transfer photoluminescence.
    Chábera P; Liu Y; Prakash O; Thyrhaug E; Nahhas AE; Honarfar A; Essén S; Fredin LA; Harlang TC; Kjær KS; Handrup K; Ericson F; Tatsuno H; Morgan K; Schnadt J; Häggström L; Ericsson T; Sobkowiak A; Lidin S; Huang P; Styring S; Uhlig J; Bendix J; Lomoth R; Sundström V; Persson P; Wärnmark K
    Nature; 2017 Mar; 543(7647):695-699. PubMed ID: 28358064
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acyl Radical Chemistry via Visible-Light Photoredox Catalysis.
    Banerjee A; Lei Z; Ngai MY
    Synthesis (Stuttg); 2019 Jan; 51(2):303-333. PubMed ID: 31057188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives.
    Pitre SP; McTiernan CD; Scaiano JC
    Acc Chem Res; 2016 Jun; 49(6):1320-30. PubMed ID: 27023767
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combined Photoredox and Iron Catalysis for the Cyclotrimerization of Alkynes.
    Neumeier M; Chakraborty U; Schaarschmidt D; de la Pena O'Shea V; Perez-Ruiz R; Jacobi von Wangelin A
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13473-13478. PubMed ID: 32190960
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Judicious Design of Cationic, Cyclometalated Ir(III) Complexes for Photochemical Energy Conversion and Optoelectronics.
    Mills IN; Porras JA; Bernhard S
    Acc Chem Res; 2018 Feb; 51(2):352-364. PubMed ID: 29336548
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Asymmetric photoredox transition-metal catalysis activated by visible light.
    Huo H; Shen X; Wang C; Zhang L; Röse P; Chen LA; Harms K; Marsch M; Hilt G; Meggers E
    Nature; 2014 Nov; 515(7525):100-3. PubMed ID: 25373679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visible-light-mediated copper photocatalysis for organic syntheses.
    Zhang Y; Wang Q; Yan Z; Ma D; Zheng Y
    Beilstein J Org Chem; 2021; 17():2520-2542. PubMed ID: 34760022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enabling Two-Electron Pathways with Iron and Cobalt: From Ligand Design to Catalytic Applications.
    Arevalo R; Chirik PJ
    J Am Chem Soc; 2019 Jun; 141(23):9106-9123. PubMed ID: 31084022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How low does iron go? Chasing the active species in fe-catalyzed cross-coupling reactions.
    Bedford RB
    Acc Chem Res; 2015 May; 48(5):1485-93. PubMed ID: 25916260
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Asymmetric Photocatalysis with Bis-cyclometalated Rhodium Complexes.
    Huang X; Meggers E
    Acc Chem Res; 2019 Mar; 52(3):833-847. PubMed ID: 30840435
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual catalysis sees the light: combining photoredox with organo-, acid, and transition-metal catalysis.
    Hopkinson MN; Sahoo B; Li JL; Glorius F
    Chemistry; 2014 Apr; 20(14):3874-86. PubMed ID: 24596102
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent Advances in Visible-Light Photoredox Catalysis for the Thiol-Ene/Yne Reactions.
    Xiao Q; Tong QX; Zhong JJ
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35163886
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discovery and Elucidation of Counteranion Dependence in Photoredox Catalysis.
    Farney EP; Chapman SJ; Swords WB; Torelli MD; Hamers RJ; Yoon TP
    J Am Chem Soc; 2019 Apr; 141(15):6385-6391. PubMed ID: 30897327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Merging Photoredox and Organometallic Catalysts in a Metal-Organic Framework Significantly Boosts Photocatalytic Activities.
    Zhu YY; Lan G; Fan Y; Veroneau SS; Song Y; Micheroni D; Lin W
    Angew Chem Int Ed Engl; 2018 Oct; 57(43):14090-14094. PubMed ID: 30129281
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photoactive Nickel Complexes in Cross-Coupling Catalysis.
    Wenger OS
    Chemistry; 2021 Feb; 27(7):2270-2278. PubMed ID: 33111994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanostructured catalysts for organic transformations.
    Chng LL; Erathodiyil N; Ying JY
    Acc Chem Res; 2013 Aug; 46(8):1825-37. PubMed ID: 23350747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands.
    Chirik PJ
    Acc Chem Res; 2015 Jun; 48(6):1687-95. PubMed ID: 26042837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.