These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 32614132)
1. Exploring the binding mode of donepezil with calf thymus DNA using spectroscopic and molecular docking methods. Guo H; Xie J; Liao T; Tuo X Luminescence; 2021 Feb; 36(1):35-44. PubMed ID: 32614132 [TBL] [Abstract][Full Text] [Related]
2. Combined spectroscopic and molecular docking approach to probing binding interactions between lovastatin and calf thymus DNA. Chen CB; Chen J; Wang J; Zhu YY; Shi JH Luminescence; 2015 Nov; 30(7):1004-10. PubMed ID: 25640921 [TBL] [Abstract][Full Text] [Related]
3. Binding interaction between sorafenib and calf thymus DNA: spectroscopic methodology, viscosity measurement and molecular docking. Shi JH; Chen J; Wang J; Zhu YY Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():443-50. PubMed ID: 25311519 [TBL] [Abstract][Full Text] [Related]
4. Groove binding between ferulic acid and calf thymus DNA: spectroscopic methodology combined with chemometrics and molecular docking studies. Zhang G; Zhou Z; Xu J; Liao Y; Hu X J Biomol Struct Dyn; 2020 Apr; 38(7):2029-2037. PubMed ID: 31157597 [TBL] [Abstract][Full Text] [Related]
5. Multi-spectroscopic, thermodynamic, and molecular docking/dynamic approaches for characterization of the binding interaction between calf thymus DNA and palbociclib. Magdy G; Shaldam MA; Belal F; Elmansi H Sci Rep; 2022 Aug; 12(1):14723. PubMed ID: 36042232 [TBL] [Abstract][Full Text] [Related]
6. Characterization of interaction of calf thymus DNA with gefitinib: spectroscopic methods and molecular docking. Shi JH; Liu TT; Jiang M; Chen J; Wang Q J Photochem Photobiol B; 2015 Jun; 147():47-55. PubMed ID: 25839749 [TBL] [Abstract][Full Text] [Related]
7. Assessment on the binding characteristics of dasatinib, a tyrosine kinase inhibitor to calf thymus DNA: insights from multi-spectroscopic methodologies and molecular docking as well as DFT calculation. Luo YJ; Wang BL; Kou SB; Lin ZY; Zhou KL; Lou YY; Shi JH J Biomol Struct Dyn; 2020 Sep; 38(14):4210-4220. PubMed ID: 31581883 [TBL] [Abstract][Full Text] [Related]
8. Interaction of an abiraterone with calf thymus DNA: Investigation with spectroscopic technique and modelling studies. Wani TA; Alsaif N; Bakheit AH; Zargar S; Al-Mehizia AA; Khan AA Bioorg Chem; 2020 Jul; 100():103957. PubMed ID: 32470763 [TBL] [Abstract][Full Text] [Related]
9. Multi-spectroscopic and molecular docking studies on the interaction of darunavir, a HIV protease inhibitor with calf thymus DNA. Shi JH; Zhou KL; Lou YY; Pan DQ Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 193():14-22. PubMed ID: 29212044 [TBL] [Abstract][Full Text] [Related]
10. Insight into the binding interactions of fluorenone-pendent Schiff base with calf thymus DNA. Neha ; Kaur N Anal Biochem; 2023 Aug; 675():115216. PubMed ID: 37353067 [TBL] [Abstract][Full Text] [Related]
11. Insight into the binding mechanism of macrolide antibiotic; erythromycin to calf thymus DNA by multispectroscopic and computational approaches. Shahabadi N; Razlansari M J Biomol Struct Dyn; 2022 Aug; 40(13):6171-6182. PubMed ID: 33525995 [TBL] [Abstract][Full Text] [Related]
12. Mode of interaction of altretamine with calf thymus DNA: biophysical insights. Goswami S; Ghosh R; Prasanthan P; Kishore N J Biomol Struct Dyn; 2023 Jun; 41(9):3728-3740. PubMed ID: 35343872 [TBL] [Abstract][Full Text] [Related]
13. DNA binding studies of antifungal drug posaconazole using spectroscopic and molecular docking methods. Madku SR; Sahoo BK; Lavanya K; Reddy RS; Bodapati ATS Int J Biol Macromol; 2023 Jan; 225():745-756. PubMed ID: 36414083 [TBL] [Abstract][Full Text] [Related]
14. DNA-binding study of anticancer drug cytarabine by spectroscopic and molecular docking techniques. Shahabadi N; Falsafi M; Maghsudi M Nucleosides Nucleotides Nucleic Acids; 2017 Jan; 36(1):49-65. PubMed ID: 27759491 [TBL] [Abstract][Full Text] [Related]
15. Study the interaction between juglone and calf thymus DNA by spectroscopic and molecular docking techniques. Shen B; Yang H; Chen J; Liu X; Zhou M Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 261():119998. PubMed ID: 34091358 [TBL] [Abstract][Full Text] [Related]
16. Binding and thermodynamic study of thalidomide with calf thymus DNA: Spectroscopic and computational approaches. Yasmeen S; Qais FA; Rana M; Islam A; Rahisuddin Int J Biol Macromol; 2022 May; 207():644-655. PubMed ID: 35278515 [TBL] [Abstract][Full Text] [Related]
17. Study of DNA interactions with bifenthrin by spectroscopic techniques and molecular modeling. Zhu P; Zhang G; Ma Y; Zhang Y; Miao H; Wu Y Spectrochim Acta A Mol Biomol Spectrosc; 2013 Aug; 112():7-14. PubMed ID: 23651773 [TBL] [Abstract][Full Text] [Related]
18. Elucidating the interaction of aminophylline with calf thymus DNA using multispectroscopic and molecular docking approach. Khan S; Ahmad R; Naseem I J Biomol Struct Dyn; 2021 Feb; 39(3):970-976. PubMed ID: 31994973 [TBL] [Abstract][Full Text] [Related]
19. Studies on the interaction of apigenin with calf thymus DNA by spectroscopic methods. Zhang S; Sun X; Kong R; Xu M Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt C():1666-70. PubMed ID: 25459730 [TBL] [Abstract][Full Text] [Related]
20. The Interaction Mode of Groove Binding Between Quercetin and Calf Thymus DNA Based on Spectrometry and Simulation. Sha Y; Chen X; Niu B; Chen Q Chem Biodivers; 2017 Oct; 14(10):. PubMed ID: 28631897 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]