These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 32614148)
1. Novel Two-Dimensional Porous Materials for Electrochemical Energy Storage: A Minireview. Mao L; Zhao X; Wang H; Xu H; Xie L; Zhao C; Chen L Chem Rec; 2020 Sep; 20(9):922-935. PubMed ID: 32614148 [TBL] [Abstract][Full Text] [Related]
2. Freestanding two-dimensional Ni(OH) Song D; Zhu J; Xuan L; Zhao C; Xie L; Chen L J Colloid Interface Sci; 2018 Jan; 509():163-170. PubMed ID: 28898736 [TBL] [Abstract][Full Text] [Related]
3. Scalable synthesis of two-dimensional porous sheets of Ni-glycine coordination complexes: A novel high-performance energy storage material. Li J; Pu T; Huang B; Hou X; Zhao C; Xie L; Chen L J Colloid Interface Sci; 2018 Dec; 531():360-368. PubMed ID: 30041113 [TBL] [Abstract][Full Text] [Related]
4. Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems. Park MS; Kim J; Kim KJ; Lee JW; Kim JH; Yamauchi Y Phys Chem Chem Phys; 2015 Dec; 17(46):30963-77. PubMed ID: 26549729 [TBL] [Abstract][Full Text] [Related]
5. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
6. Cobalt-Doped Porous Carbon Nanosheets Derived from 2D Hypercrosslinked Polymer with CoN₄ for High Performance Electrochemical Capacitors. Chen Y; Liu F; Qiu F; Lu C; Kang J; Zhao D; Han S; Zhuang X Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961264 [TBL] [Abstract][Full Text] [Related]
7. Two-Dimensional π-Conjugated Frameworks as a Model System to Unveil a Multielectron-Transfer-Based Energy Storage Mechanism. Sakaushi K; Nishihara H Acc Chem Res; 2021 Aug; 54(15):3003-3015. PubMed ID: 33998232 [TBL] [Abstract][Full Text] [Related]
8. Porous One-Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage. Wei Q; Xiong F; Tan S; Huang L; Lan EH; Dunn B; Mai L Adv Mater; 2017 May; 29(20):. PubMed ID: 28106303 [TBL] [Abstract][Full Text] [Related]
9. When Conductive MOFs Meet MnO Duan H; Zhao Z; Lu J; Hu W; Zhang Y; Li S; Zhang M; Zhu R; Pang H ACS Appl Mater Interfaces; 2021 Jul; 13(28):33083-33090. PubMed ID: 34235934 [TBL] [Abstract][Full Text] [Related]
10. Overview of transition metal-based composite materials for supercapacitor electrodes. Cui M; Meng X Nanoscale Adv; 2020 Dec; 2(12):5516-5528. PubMed ID: 36133879 [TBL] [Abstract][Full Text] [Related]
11. Nanostructured Mo-based electrode materials for electrochemical energy storage. Hu X; Zhang W; Liu X; Mei Y; Huang Y Chem Soc Rev; 2015 Apr; 44(8):2376-404. PubMed ID: 25688809 [TBL] [Abstract][Full Text] [Related]
12. Two-dimensional porous (Co, Ni)-based monometallic hydroxides and bimetallic layered double hydroxides thin sheets with honeycomb-like nanostructure as positive electrode for high-performance hybrid supercapacitors. Huang B; Wang W; Pu T; Li J; Zhu J; Zhao C; Xie L; Chen L J Colloid Interface Sci; 2018 Dec; 532():630-640. PubMed ID: 30119005 [TBL] [Abstract][Full Text] [Related]
13. An amorphous carbon nitride/NiO/CoN-based composite: a highly efficient nonprecious electrode for supercapacitors and the oxygen evolution reaction. Yang H; Guo H; Pang K; Fan P; Li X; Ren W; Song R Nanoscale; 2020 Apr; 12(13):7024-7034. PubMed ID: 32091065 [TBL] [Abstract][Full Text] [Related]
14. A Zinc Cobalt Sulfide Nanosheet Array Derived from a 2D Bimetallic Metal-Organic Frameworks for High-Performance Supercapacitors. Tao K; Han X; Cheng Q; Yang Y; Yang Z; Ma Q; Han L Chemistry; 2018 Aug; 24(48):12584-12591. PubMed ID: 29675973 [TBL] [Abstract][Full Text] [Related]
15. Metal-organic frameworks-derived MCo Guo Y; Huang M; Zhong H; Xu Z; Ye Q; Huang J; Ma G; Xu Z; Zeb A; Lin X J Colloid Interface Sci; 2023 Nov; 650(Pt B):1638-1647. PubMed ID: 37494860 [TBL] [Abstract][Full Text] [Related]
16. Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments. Liang R; Du Y; Xiao P; Cheng J; Yuan S; Chen Y; Yuan J; Chen J Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34068548 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of Two-Dimensional Materials for Capacitive Energy Storage. Mendoza-Sánchez B; Gogotsi Y Adv Mater; 2016 Aug; 28(29):6104-35. PubMed ID: 27254831 [TBL] [Abstract][Full Text] [Related]
18. Two-Dimensional Transition Metal Oxide and Hydroxide-Based Hierarchical Architectures for Advanced Supercapacitor Materials. Guan M; Wang Q; Zhang X; Bao J; Gong X; Liu Y Front Chem; 2020; 8():390. PubMed ID: 32500058 [TBL] [Abstract][Full Text] [Related]
19. Advanced Functional Carbons and Their Hybrid Nanoarchitectures towards Supercapacitor Applications. Young C; Park T; Yi JW; Kim J; Hossain MSA; Kaneti YV; Yamauchi Y ChemSusChem; 2018 Oct; 11(20):3546-3558. PubMed ID: 30156750 [TBL] [Abstract][Full Text] [Related]
20. Metal Phosphides and Phosphates-based Electrodes for Electrochemical Supercapacitors. Li X; Elshahawy AM; Guan C; Wang J Small; 2017 Oct; 13(39):. PubMed ID: 28834280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]