BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32614415)

  • 1. Rapid epistatic mixed-model association studies by controlling multiple polygenic effects.
    Wang D; Tang H; Liu JF; Xu S; Zhang Q; Ning C
    Bioinformatics; 2020 Dec; 36(19):4833-4837. PubMed ID: 32614415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rapid epistatic mixed-model association analysis by linear retransformations of genomic estimated values.
    Ning C; Wang D; Kang H; Mrode R; Zhou L; Xu S; Liu JF
    Bioinformatics; 2018 Jun; 34(11):1817-1825. PubMed ID: 29342229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient multivariate analysis algorithms for longitudinal genome-wide association studies.
    Ning C; Wang D; Zhou L; Wei J; Liu Y; Kang H; Zhang S; Zhou X; Xu S; Liu JF
    Bioinformatics; 2019 Dec; 35(23):4879-4885. PubMed ID: 31070732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GADGETS: a genetic algorithm for detecting epistasis using nuclear families.
    Nodzenski M; Shi M; Krahn JM; Wise AS; Li Y; Li L; Umbach DM; Weinberg CR
    Bioinformatics; 2022 Jan; 38(4):1052-1058. PubMed ID: 34788792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EpiGEN: an epistasis simulation pipeline.
    Blumenthal DB; Viola L; List M; Baumbach J; Tieri P; Kacprowski T
    Bioinformatics; 2020 Dec; 36(19):4957-4959. PubMed ID: 32289146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput analysis of epistasis in genome-wide association studies with BiForce.
    Gyenesei A; Moody J; Semple CA; Haley CS; Wei WH
    Bioinformatics; 2012 Aug; 28(15):1957-64. PubMed ID: 22618535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of epistasis loci underlying rice flowering time by controlling population stratification and polygenic effect.
    Ahsan A; Monir M; Meng X; Rahaman M; Chen H; Chen M
    DNA Res; 2019 Apr; 26(2):119-130. PubMed ID: 30590457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MatrixEpistasis: ultrafast, exhaustive epistasis scan for quantitative traits with covariate adjustment.
    Zhu S; Fang G
    Bioinformatics; 2018 Jul; 34(14):2341-2348. PubMed ID: 29509873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leveraging the genetic correlation between traits improves the detection of epistasis in genome-wide association studies.
    Stamp J; DenAdel A; Weinreich D; Crawford L
    G3 (Bethesda); 2023 Aug; 13(8):. PubMed ID: 37243672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CMDR based differential evolution identifies the epistatic interaction in genome-wide association studies.
    Yang CH; Chuang LY; Lin YD
    Bioinformatics; 2017 Aug; 33(15):2354-2362. PubMed ID: 28379338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ADDO: a comprehensive toolkit to detect, classify and visualize additive and non-additive quantitative trait loci.
    Cui L; Yang B; Pontikos N; Mott R; Huang L
    Bioinformatics; 2020 Mar; 36(5):1517-1521. PubMed ID: 31764991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using tree-based methods for detection of gene-gene interactions in the presence of a polygenic signal: simulation study with application to educational attainment in the Generation Scotland Cohort Study.
    Meijsen JJ; Rammos A; Campbell A; Hayward C; Porteous DJ; Deary IJ; Marioni RE; Nicodemus KK
    Bioinformatics; 2019 Jan; 35(2):181-188. PubMed ID: 29931044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CINOEDV: a co-information based method for detecting and visualizing n-order epistatic interactions.
    Shang J; Sun Y; Liu JX; Xia J; Zhang J; Zheng CH
    BMC Bioinformatics; 2016 May; 17(1):214. PubMed ID: 27184783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SMMB: a stochastic Markov blanket framework strategy for epistasis detection in GWAS.
    Niel C; Sinoquet C; Dina C; Rocheleau G
    Bioinformatics; 2018 Aug; 34(16):2773-2780. PubMed ID: 29547902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TEAM: efficient two-locus epistasis tests in human genome-wide association study.
    Zhang X; Huang S; Zou F; Wang W
    Bioinformatics; 2010 Jun; 26(12):i217-27. PubMed ID: 20529910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of genetic drift on variance components under a general model of epistasis.
    Barton NH; Turelli M
    Evolution; 2004 Oct; 58(10):2111-32. PubMed ID: 15562679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MTG2: an efficient algorithm for multivariate linear mixed model analysis based on genomic information.
    Lee SH; van der Werf JH
    Bioinformatics; 2016 May; 32(9):1420-2. PubMed ID: 26755623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. eQTL epistasis: detecting epistatic effects and inferring hierarchical relationships of genes in biological pathways.
    Kang M; Zhang C; Chun HW; Ding C; Liu C; Gao J
    Bioinformatics; 2015 Mar; 31(5):656-64. PubMed ID: 25359893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prioritizing tests of epistasis through hierarchical representation of genomic redundancies.
    Cowman T; Koyutürk M
    Nucleic Acids Res; 2017 Aug; 45(14):e131. PubMed ID: 28605458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-additive genetic variation in growth, carcass and fertility traits of beef cattle.
    Bolormaa S; Pryce JE; Zhang Y; Reverter A; Barendse W; Hayes BJ; Goddard ME
    Genet Sel Evol; 2015 Apr; 47(1):26. PubMed ID: 25880217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.