These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 32614415)
1. Rapid epistatic mixed-model association studies by controlling multiple polygenic effects. Wang D; Tang H; Liu JF; Xu S; Zhang Q; Ning C Bioinformatics; 2020 Dec; 36(19):4833-4837. PubMed ID: 32614415 [TBL] [Abstract][Full Text] [Related]
2. A rapid epistatic mixed-model association analysis by linear retransformations of genomic estimated values. Ning C; Wang D; Kang H; Mrode R; Zhou L; Xu S; Liu JF Bioinformatics; 2018 Jun; 34(11):1817-1825. PubMed ID: 29342229 [TBL] [Abstract][Full Text] [Related]
3. Efficient multivariate analysis algorithms for longitudinal genome-wide association studies. Ning C; Wang D; Zhou L; Wei J; Liu Y; Kang H; Zhang S; Zhou X; Xu S; Liu JF Bioinformatics; 2019 Dec; 35(23):4879-4885. PubMed ID: 31070732 [TBL] [Abstract][Full Text] [Related]
4. GADGETS: a genetic algorithm for detecting epistasis using nuclear families. Nodzenski M; Shi M; Krahn JM; Wise AS; Li Y; Li L; Umbach DM; Weinberg CR Bioinformatics; 2022 Jan; 38(4):1052-1058. PubMed ID: 34788792 [TBL] [Abstract][Full Text] [Related]
5. EpiGEN: an epistasis simulation pipeline. Blumenthal DB; Viola L; List M; Baumbach J; Tieri P; Kacprowski T Bioinformatics; 2020 Dec; 36(19):4957-4959. PubMed ID: 32289146 [TBL] [Abstract][Full Text] [Related]
6. High-throughput analysis of epistasis in genome-wide association studies with BiForce. Gyenesei A; Moody J; Semple CA; Haley CS; Wei WH Bioinformatics; 2012 Aug; 28(15):1957-64. PubMed ID: 22618535 [TBL] [Abstract][Full Text] [Related]
7. Identification of epistasis loci underlying rice flowering time by controlling population stratification and polygenic effect. Ahsan A; Monir M; Meng X; Rahaman M; Chen H; Chen M DNA Res; 2019 Apr; 26(2):119-130. PubMed ID: 30590457 [TBL] [Abstract][Full Text] [Related]
8. MatrixEpistasis: ultrafast, exhaustive epistasis scan for quantitative traits with covariate adjustment. Zhu S; Fang G Bioinformatics; 2018 Jul; 34(14):2341-2348. PubMed ID: 29509873 [TBL] [Abstract][Full Text] [Related]
9. Leveraging the genetic correlation between traits improves the detection of epistasis in genome-wide association studies. Stamp J; DenAdel A; Weinreich D; Crawford L G3 (Bethesda); 2023 Aug; 13(8):. PubMed ID: 37243672 [TBL] [Abstract][Full Text] [Related]
10. CMDR based differential evolution identifies the epistatic interaction in genome-wide association studies. Yang CH; Chuang LY; Lin YD Bioinformatics; 2017 Aug; 33(15):2354-2362. PubMed ID: 28379338 [TBL] [Abstract][Full Text] [Related]
11. ADDO: a comprehensive toolkit to detect, classify and visualize additive and non-additive quantitative trait loci. Cui L; Yang B; Pontikos N; Mott R; Huang L Bioinformatics; 2020 Mar; 36(5):1517-1521. PubMed ID: 31764991 [TBL] [Abstract][Full Text] [Related]
12. Using tree-based methods for detection of gene-gene interactions in the presence of a polygenic signal: simulation study with application to educational attainment in the Generation Scotland Cohort Study. Meijsen JJ; Rammos A; Campbell A; Hayward C; Porteous DJ; Deary IJ; Marioni RE; Nicodemus KK Bioinformatics; 2019 Jan; 35(2):181-188. PubMed ID: 29931044 [TBL] [Abstract][Full Text] [Related]
13. CINOEDV: a co-information based method for detecting and visualizing n-order epistatic interactions. Shang J; Sun Y; Liu JX; Xia J; Zhang J; Zheng CH BMC Bioinformatics; 2016 May; 17(1):214. PubMed ID: 27184783 [TBL] [Abstract][Full Text] [Related]
14. SMMB: a stochastic Markov blanket framework strategy for epistasis detection in GWAS. Niel C; Sinoquet C; Dina C; Rocheleau G Bioinformatics; 2018 Aug; 34(16):2773-2780. PubMed ID: 29547902 [TBL] [Abstract][Full Text] [Related]
15. TEAM: efficient two-locus epistasis tests in human genome-wide association study. Zhang X; Huang S; Zou F; Wang W Bioinformatics; 2010 Jun; 26(12):i217-27. PubMed ID: 20529910 [TBL] [Abstract][Full Text] [Related]
16. Effects of genetic drift on variance components under a general model of epistasis. Barton NH; Turelli M Evolution; 2004 Oct; 58(10):2111-32. PubMed ID: 15562679 [TBL] [Abstract][Full Text] [Related]
17. MTG2: an efficient algorithm for multivariate linear mixed model analysis based on genomic information. Lee SH; van der Werf JH Bioinformatics; 2016 May; 32(9):1420-2. PubMed ID: 26755623 [TBL] [Abstract][Full Text] [Related]
18. eQTL epistasis: detecting epistatic effects and inferring hierarchical relationships of genes in biological pathways. Kang M; Zhang C; Chun HW; Ding C; Liu C; Gao J Bioinformatics; 2015 Mar; 31(5):656-64. PubMed ID: 25359893 [TBL] [Abstract][Full Text] [Related]
19. Prioritizing tests of epistasis through hierarchical representation of genomic redundancies. Cowman T; Koyutürk M Nucleic Acids Res; 2017 Aug; 45(14):e131. PubMed ID: 28605458 [TBL] [Abstract][Full Text] [Related]
20. Non-additive genetic variation in growth, carcass and fertility traits of beef cattle. Bolormaa S; Pryce JE; Zhang Y; Reverter A; Barendse W; Hayes BJ; Goddard ME Genet Sel Evol; 2015 Apr; 47(1):26. PubMed ID: 25880217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]