These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 3261488)

  • 61. Proposed mechanism for dual regulation of cross-bridge turn-over in vertebrate muscle.
    Babu A; Gulati J
    Adv Exp Med Biol; 1988; 226():101-12. PubMed ID: 3407510
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Molecular mechanism of actin-myosin motor in muscle.
    Koubassova NA; Tsaturyan AK
    Biochemistry (Mosc); 2011 Dec; 76(13):1484-506. PubMed ID: 22339600
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A mechanochemical model for the steady and transient contractions of the skeletal muscle.
    Akazawa K; Yamamoto M; Fujii K; Mashima H
    Jpn J Physiol; 1976; 26(1):9-28. PubMed ID: 957531
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Equatorial x-ray intensities and isometric force levels in frog sartorius muscle.
    Yu LP; Hartt JE; Podolsky RJ
    J Mol Biol; 1979 Jul; 132(1):53-67. PubMed ID: 316011
    [No Abstract]   [Full Text] [Related]  

  • 65. A pre-active attached state of myosin heads in rat skeletal muscles.
    Yagi N; Horiuti K; Takemori S
    J Muscle Res Cell Motil; 1998 Jan; 19(1):75-86. PubMed ID: 9477379
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Calcium transients and calcium binding to troponin at the contraction threshold in skeletal muscle.
    Kovács L; Szücs G; Csernoch L
    Biophys J; 1987 Apr; 51(4):521-6. PubMed ID: 3495298
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A unified theory of the control of actin and myosin in nonmuscle movements.
    Durham AC
    Cell; 1974 Jul; 2(3):123-35. PubMed ID: 4137519
    [No Abstract]   [Full Text] [Related]  

  • 68. X-ray evidence for radial cross-bridge movement and for the sliding filament model in actively contracting skeletal muscle.
    Haselgrove JC; Huxley HE
    J Mol Biol; 1973 Jul; 77(4):549-68. PubMed ID: 4541885
    [No Abstract]   [Full Text] [Related]  

  • 69. On the intensity reversal of the "tropomyosin reflexions" in X-ray diffraction patterns from crab striated muscle.
    Maéda Y
    Adv Exp Med Biol; 1984; 170():251-63. PubMed ID: 6564834
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Movement of tropomyosin during regulation of vertebrate skeletal muscle: a simple physical model.
    Parry DA
    Biochem Biophys Res Commun; 1976 Jan; 68(2):323-8. PubMed ID: 1252229
    [No Abstract]   [Full Text] [Related]  

  • 71. Changes in the pitch of the myosin helix preceding cross-brdige attachment in oscillatory contractions of frog sartorius muscle.
    Chaplain RA; Graubner R; Sacharjan S
    Biochem Biophys Res Commun; 1974 Nov; 61(2):788-94. PubMed ID: 4455247
    [No Abstract]   [Full Text] [Related]  

  • 72. Laser diffraction patterns during isometric and auxotonic contractions in frog skeletal muscle.
    Matsumura M; Kimura H
    Jpn J Physiol; 1985; 35(2):343-54. PubMed ID: 3876462
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Structural dynamics of frog muscle during isometric contraction.
    Bonner RF; Carlson FD
    J Gen Physiol; 1975 May; 65(5):555-81. PubMed ID: 1080795
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Relationship between light diffraction intensity and tension development in frog skeletal muscle.
    Oba T; Hotta K
    Experientia; 1983 Jan; 39(1):58-9. PubMed ID: 6600686
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Activation of thin-filament-regulated muscle by calcium ion: considerations based on nearest-neighbor lattice statistics.
    Shiner JS; Solaro RJ
    Proc Natl Acad Sci U S A; 1982 Aug; 79(15):4637-41. PubMed ID: 6956882
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [X-ray diffraction studies of muscles].
    Razumova LL
    Biofizika; 1975; 20(1):171-84. PubMed ID: 1089434
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A comparative study of the supramolecular structure of frog sartorius and dorsal semitendinosus muscle.
    Harries JE; Martin-Fernandez ML; Diakun GP; Mant GR; Bordas J
    J Struct Biol; 1991 Jun; 106(3):264-71. PubMed ID: 1804281
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Regulation of vertebrate striated muscle contraction.
    Payne MR; Rudnick SE
    Trends Biochem Sci; 1989 Sep; 14(9):357-60. PubMed ID: 2486301
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Mechanical activation and deactivation of isolated contractile structure of the frog sartorius following rectangular and sinoidal length changes].
    Heinl P
    Pflugers Arch; 1972; 333(3):213-26. PubMed ID: 5065888
    [No Abstract]   [Full Text] [Related]  

  • 80. Changes in crossbridge attachment in a myosin-regulated muscle.
    Vibert P; Szent-Györgyi AG; Craig R; Wray J; Cohen C
    Nature; 1978 May; 273(5657):64-6. PubMed ID: 692672
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.