These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32615035)

  • 1. mycoCSM: Using Graph-Based Signatures to Identify Safe Potent Hits against Mycobacteria.
    Pires DEV; Ascher DB
    J Chem Inf Model; 2020 Jul; 60(7):3450-3456. PubMed ID: 32615035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pdCSM-cancer: Using Graph-Based Signatures to Identify Small Molecules with Anticancer Properties.
    Al-Jarf R; de Sá AGC; Pires DEV; Ascher DB
    J Chem Inf Model; 2021 Jul; 61(7):3314-3322. PubMed ID: 34213323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. cropCSM: designing safe and potent herbicides with graph-based signatures.
    Pires DEV; Stubbs KA; Mylne JS; Ascher DB
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35211724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure guided prediction of Pyrazinamide resistance mutations in pncA.
    Karmakar M; Rodrigues CHM; Horan K; Denholm JT; Ascher DB
    Sci Rep; 2020 Feb; 10(1):1875. PubMed ID: 32024884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pdCSM-PPI: Using Graph-Based Signatures to Identify Protein-Protein Interaction Inhibitors.
    Rodrigues CHM; Pires DEV; Ascher DB
    J Chem Inf Model; 2021 Nov; 61(11):5438-5445. PubMed ID: 34719929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. embryoTox: Using Graph-Based Signatures to Predict the Teratogenicity of Small Molecules.
    Aljarf R; Tang S; Pires DEV; Ascher DB
    J Chem Inf Model; 2023 Jan; 63(2):432-441. PubMed ID: 36595441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. kinCSM: Using graph-based signatures to predict small molecule CDK2 inhibitors.
    Zhou Y; Al-Jarf R; Alavi A; Nguyen TB; Rodrigues CHM; Pires DEV; Ascher DB
    Protein Sci; 2022 Nov; 31(11):e4453. PubMed ID: 36305769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pdCSM-GPCR: predicting potent GPCR ligands with graph-based signatures.
    Velloso JPL; Ascher DB; Pires DEV
    Bioinform Adv; 2021; 1(1):vbab031. PubMed ID: 34901870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CSM-AB: graph-based antibody-antigen binding affinity prediction and docking scoring function.
    Myung Y; Pires DEV; Ascher DB
    Bioinformatics; 2022 Jan; 38(4):1141-1143. PubMed ID: 34734992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Standardization of laboratory tests for tuberculosis and their proficiency testing].
    Abe C
    Kekkaku; 2003 Aug; 78(8):541-51. PubMed ID: 14509226
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Iftkhar S; de Sá AGC; Velloso JPL; Aljarf R; Pires DEV; Ascher DB
    J Chem Inf Model; 2022 Oct; 62(20):4827-4836. PubMed ID: 36219164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond multidrug resistance: Leveraging rare variants with machine and statistical learning models in Mycobacterium tuberculosis resistance prediction.
    Chen ML; Doddi A; Royer J; Freschi L; Schito M; Ezewudo M; Kohane IS; Beam A; Farhat M
    EBioMedicine; 2019 May; 43():356-369. PubMed ID: 31047860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel drug discovery concept for tuberculosis: inhibition of bacterial and host cell signalling.
    Székely R; Wáczek F; Szabadkai I; Németh G; Hegymegi-Barakonyi B; Eros D; Szokol B; Pató J; Hafenbradl D; Satchell J; Saint-Joanis B; Cole ST; Orfi L; Klebl BM; Kéri G
    Immunol Lett; 2008 Mar; 116(2):225-31. PubMed ID: 18258308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclophostin and Cyclipostins analogues, new promising molecules to treat mycobacterial-related diseases.
    Nguyen PC; Madani A; Santucci P; Martin BP; Paudel RR; Delattre S; Herrmann JL; Spilling CD; Kremer L; Canaan S; Cavalier JF
    Int J Antimicrob Agents; 2018 Apr; 51(4):651-654. PubMed ID: 29241819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fragment-Based Whole Cell Screen Delivers Hits against M. tuberculosis and Non-tuberculous Mycobacteria.
    Moreira W; Lim JJ; Yeo SY; Ramanujulu PM; Dymock BW; Dick T
    Front Microbiol; 2016; 7():1392. PubMed ID: 27656168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening of TB Actives for Activity against Nontuberculous Mycobacteria Delivers High Hit Rates.
    Low JL; Wu ML; Aziz DB; Laleu B; Dick T
    Front Microbiol; 2017; 8():1539. PubMed ID: 28861054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinact: a computational approach for predicting activating missense mutations in protein kinases.
    Rodrigues CH; Ascher DB; Pires DE
    Nucleic Acids Res; 2018 Jul; 46(W1):W127-W132. PubMed ID: 29788456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning and docking models for Mycobacterium tuberculosis topoisomerase I.
    Ekins S; Godbole AA; Kéri G; Orfi L; Pato J; Bhat RS; Verma R; Bradley EK; Nagaraja V
    Tuberculosis (Edinb); 2017 Mar; 103():52-60. PubMed ID: 28237034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing and Validating Machine Learning Models for Mycobacterium tuberculosis Drug Discovery.
    Lane T; Russo DP; Zorn KM; Clark AM; Korotcov A; Tkachenko V; Reynolds RC; Perryman AL; Freundlich JS; Ekins S
    Mol Pharm; 2018 Oct; 15(10):4346-4360. PubMed ID: 29672063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.