BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32615386)

  • 1. Effects of in vitro oxidation on myofibrillar protein charge, aggregation, and structural characteristics.
    Zhang D; Li H; Wang Z; Emara AM; Hu Y; He Z
    Food Chem; 2020 Dec; 332():127396. PubMed ID: 32615386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different physicochemical, structural and digestibility characteristics of myofibrillar protein from PSE and normal pork before and after oxidation.
    Chen L; Li C; Ullah N; Guo Y; Sun X; Wang X; Xu X; Hackman RM; Zhou G; Feng X
    Meat Sci; 2016 Nov; 121():228-237. PubMed ID: 27348321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled Cross-Linking with Glucose Oxidase for the Enhancement of Gelling Potential of Pork Myofibrillar Protein.
    Wang X; Xiong YL; Sato H; Kumazawa Y
    J Agric Food Chem; 2016 Dec; 64(50):9523-9531. PubMed ID: 27936702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of oxidation on the gel properties of porcine myofibrillar proteins and their binding abilities with selected flavour compounds.
    Shen H; Stephen Elmore J; Zhao M; Sun W
    Food Chem; 2020 Nov; 329():127032. PubMed ID: 32505986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of sodium pyrophosphate on the physicochemical and gelling properties of myofibrillar proteins under hydroxyl radical-induced oxidative stress.
    Cao Y; Ma W; Wang J; Zhang S; Wang Z; Zhao J; Fan X; Zhang D
    Food Funct; 2020 Mar; 11(3):1996-2004. PubMed ID: 32101205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Oxidation in Vitro on Structures and Functions of Myofibrillar Protein from Beef Muscles.
    Fu Q; Liu R; Wang H; Hua C; Song S; Zhou G; Zhang W
    J Agric Food Chem; 2019 May; 67(20):5866-5873. PubMed ID: 31026156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stability of isoelectric solubilization/precipitation-isolated PSE-like chicken protein.
    Zhao X; Xing T; Wang P; Xu X; Zhou G
    Food Chem; 2019 Jun; 283():646-655. PubMed ID: 30722923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myofibrillar protein oxidation affects filament charges, aggregation and water-holding.
    Bao Y; Boeren S; Ertbjerg P
    Meat Sci; 2018 Jan; 135():102-108. PubMed ID: 28968552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of hydroxyl radical induced oxidation on the physicochemical and gelling properties of shrimp myofibrillar protein and its mechanism.
    Li DY; Tan ZF; Liu ZQ; Wu C; Liu HL; Guo C; Zhou DY
    Food Chem; 2021 Jul; 351():129344. PubMed ID: 33647688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical changes of Coregonus peled myofibrillar proteins isolates as affected by HRGS oxidation system.
    Deng X; Lei Y; Liu J; Zhang J; Qin J
    J Food Biochem; 2019 Feb; 43(2):e12710. PubMed ID: 31353664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of mulberry polyphenols on oxidation stability of sarcoplasmic and myofibrillar proteins in dried minced pork slices during processing and storage.
    Cheng J; Xu L; Xiang R; Liu X; Zhu M
    Meat Sci; 2020 Feb; 160():107973. PubMed ID: 31655245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effectiveness of clove extracts in the inhibition of hydroxyl radical oxidation-induced structural and rheological changes in porcine myofibrillar protein.
    Chen H; Diao J; Li Y; Chen Q; Kong B
    Meat Sci; 2016 Jan; 111():60-6. PubMed ID: 26340742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation affects dye binding of myofibrillar proteins via alteration in net charges mediated by a reduction in isoelectric point.
    Yu Q; Shi T; Xiong Z; Yuan L; Hong H; Gao R; Bao Y
    Food Res Int; 2023 Jan; 163():112204. PubMed ID: 36596136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of oxidative modification on the functional, conformational and gelling properties of myofibrillar proteins from Culter alburnus.
    Zhang Z; Xiong Z; Lu S; Walayat N; Hu C; Xiong H
    Int J Biol Macromol; 2020 Nov; 162():1442-1452. PubMed ID: 32777424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of hydroxyl radicals on biochemical and functional characteristics of myofibrillar protein from large yellow croaker (Pseudosciaena crocea).
    Li X; Liu C; Wang J; Zhou K; Yi S; Zhu W; Xu Y; Lin H; Li J
    J Food Biochem; 2020 Jan; 44(1):e13084. PubMed ID: 31642545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myofibrillar protein hydrolysis under hydroxyl radical oxidative stress: Structural changes and their impacts on binding to selected aldehydes.
    Hu X; Zhang B; Li XA; Dai X; Kong B; Liu H; Chen Q
    Food Chem; 2024 Sep; 452():139567. PubMed ID: 38718456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation and deaggregation: The effect of high-pressure homogenization cycles on myofibrillar proteins aqueous solution.
    Su C; He Z; Wang Z; Zhang D; Li H
    Int J Biol Macromol; 2021 Oct; 189():567-576. PubMed ID: 34428492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of in vitro oxidation on the water retention mechanism of myofibrillar proteins gel from pork muscles.
    Zhang D; Li H; Emara AM; Hu Y; Wang Z; Wang M; He Z
    Food Chem; 2020 Jun; 315():126226. PubMed ID: 32018081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic profiling of oxidized cysteine and methionine residues by hydroxyl radicals in myosin of pork.
    Lu H; Luo Y; Lametsch R
    Food Chem; 2018 Mar; 243():277-284. PubMed ID: 29146339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. μ-Calpain oxidation and proteolytic changes on myofibrillar proteins from Coregonus Peled in vitro.
    Liu P; Zhang Z; Guo X; Zhu X; Mao X; Guo X; Deng X; Zhang J
    Food Chem; 2021 Nov; 361():130100. PubMed ID: 34044215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.