These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32615386)

  • 41. Oxidation affects pH buffering capacity of myofibrillar proteins via modification of histidine residue and structure of myofibrillar proteins.
    Yu Q; Hong H; Liu Y; Monto AR; Gao R; Bao Y
    Int J Biol Macromol; 2024 Mar; 260(Pt 2):129532. PubMed ID: 38246447
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hydroxyl radical and ferryl-generating systems promote gel network formation of myofibrillar protein.
    Xiong YL; Blanchard SP; Ooizumi T; Ma Y
    J Food Sci; 2010 Mar; 75(2):C215-21. PubMed ID: 20492228
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Key role of cysteine residues and sulfenic acids in thermal- and H2O2-mediated modification of β-lactoglobulin.
    Krämer AC; Thulstrup PW; Lund MN; Davies MJ
    Free Radic Biol Med; 2016 Aug; 97():544-555. PubMed ID: 27430598
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative time-course of lipid and myofibrillar protein oxidation in different biphasic systems under hydroxyl radical stress.
    Yang J; Xiong YL
    Food Chem; 2018 Mar; 243():231-238. PubMed ID: 29146333
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protein oxidation enhances hydration but suppresses water-holding capacity in porcine longissimus muscle.
    Liu Z; Xiong YL; Chen J
    J Agric Food Chem; 2010 Oct; 58(19):10697-704. PubMed ID: 20806938
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of substituted hydroxyl groups in the changes of solution turbidity in the oxidation of aromatic contaminants.
    Villota N; Jm L; Lm C
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1105-1112. PubMed ID: 27464665
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of protein degradation, protein oxidation, and μ-calpain activation between pale, soft, and exudative and red, firm, and nonexudative pork during postmortem aging.
    Yin Y; Zhang WG; Zhou GH; Guo B
    J Anim Sci; 2014 Aug; 92(8):3745-52. PubMed ID: 24987073
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Potential Biomarker of Myofibrillar Protein Oxidation in Raw and Cooked Ham: 3-Nitrotyrosine Formed by Nitrosation.
    Feng X; Li C; Ullah N; Hackman RM; Chen L; Zhou G
    J Agric Food Chem; 2015 Dec; 63(51):10957-64. PubMed ID: 26593775
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural changes induced by direct current magnetic field improve water holding capacity of pork myofibrillar protein gels.
    Yang K; Wang L; Guo J; Wu D; Wang X; Wu M; Feng X; Ma J; Zhang Y; Sun W
    Food Chem; 2021 May; 345():128849. PubMed ID: 33601660
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microbial transglutaminase-induced structural and rheological changes of cationic and anionic myofibrillar proteins.
    Hong GP; Xiong YL
    Meat Sci; 2012 May; 91(1):36-42. PubMed ID: 22222178
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Oxidation-induced unfolding facilitates Myosin cross-linking in myofibrillar protein by microbial transglutaminase.
    Li C; Xiong YL; Chen J
    J Agric Food Chem; 2012 Aug; 60(32):8020-7. PubMed ID: 22809283
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of electrostatics on the oxidation rates of organic compounds in heterogeneous Fenton systems.
    Kwan WP; Voelker BM
    Environ Sci Technol; 2004 Jun; 38(12):3425-31. PubMed ID: 15260344
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of oxidative modification on textural properties and gel structure of pork myofibrillar proteins.
    Xia M; Chen Y; Guo J; Feng X; Yin X; Wang L; Wu W; Li Z; Sun W; Ma J
    Food Res Int; 2019 Jul; 121():678-683. PubMed ID: 31108795
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oxidative damage to food and human serum proteins: Radical-mediated oxidation vs. glyco-oxidation.
    Luna C; Estévez M
    Food Chem; 2018 Nov; 267():111-118. PubMed ID: 29934144
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Protein carbonylation and structural changes in porcine myofibrillar protein exposed to metal ion-H
    Wang W; Jia X; Guo C; Pan J; Dong X; Li S
    Food Res Int; 2023 Nov; 173(Pt 2):113420. PubMed ID: 37803758
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Disruption of secondary structure by oxidative stress alters the cross-linking pattern of myosin by microbial transglutaminase.
    Li C; Xiong YL
    Meat Sci; 2015 Oct; 108():97-105. PubMed ID: 26068405
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of high pressure on the functional properties of pork myofibrillar proteins.
    Grossi A; Olsen K; Bolumar T; Rinnan Å; Øgendal LH; Orlien V
    Food Chem; 2016 Apr; 196():1005-15. PubMed ID: 26593583
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Moderate Protein Oxidation Improves Bovine Myofibril Digestibility by Releasing Peptides in the S2 Region of Myosin: A Peptidomics Perspective.
    Yin Y; Xing L; Zhang W
    J Agric Food Chem; 2023 Feb; 71(5):2514-2522. PubMed ID: 36703551
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Variation in the cross-linking pattern of porcine myofibrillar protein exposed to three oxidative environments.
    Xiong YL; Park D; Ooizumi T
    J Agric Food Chem; 2009 Jan; 57(1):153-9. PubMed ID: 19061417
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Does oxidation affect the water functionality of myofibrillar proteins?
    Bertram HC; Kristensen M; Østdal H; Baron CP; Young JF; Andersen HJ
    J Agric Food Chem; 2007 Mar; 55(6):2342-8. PubMed ID: 17316016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.