These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32615495)

  • 41. Recovery of zinc and copper from copper smelter flue dust. Optimisation of sulphuric acid leaching.
    Gonzalez-Montero P; Iglesias-Gonzalez N; Romero R; Mazuelos A; Carranza F
    Environ Technol; 2020 Apr; 41(9):1093-1100. PubMed ID: 30192727
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Arsenic removal from alkaline leaching solution using Fe (III) precipitation.
    Wang Y; Lv C; Xiao L; Fu G; Liu Y; Ye S; Chen Y
    Environ Technol; 2019 May; 40(13):1714-1720. PubMed ID: 29345188
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Removal of arsenic from jarosite waste using hydrometallurgical treatment.
    Singh VK; Kumar M; Manna S; Bobde P; Govarthanan M
    Environ Geochem Health; 2024 Feb; 46(2):67. PubMed ID: 38341826
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of steel mill electric-arc furnace dust.
    Sofilić T; Rastovcan-Mioc A; Cerjan-Stefanović S; Novosel-Radović V; Jenko M
    J Hazard Mater; 2004 Jun; 109(1-3):59-70. PubMed ID: 15177746
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of temperature on iron leaching from bauxite residue by sulfuric acid.
    Liu ZR; Zeng K; Zhao W; Li Y
    Bull Environ Contam Toxicol; 2009 Jan; 82(1):55-8. PubMed ID: 18949440
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Study on the Mechanism and Kinetics of Ultrasound-Enhanced Sulfuric Acid Leaching for Zinc Extraction from Zinc Oxide Dust.
    Zheng X; Li S; Liu B; Zhang L; Ma A
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079349
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mineral Phase Reconstruction and Separation Behavior of Zinc and Iron from Zinc-Containing Dust.
    Xie Z; Li G; Guo Y; Wang S; Chen F; Yang L; Fu G; Jiang T
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176363
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermodynamic analysis of caustic-roasting of electric arc furnace dust.
    Ahmad S; Sajal WR; Gulshan F; Hasan M; Rhamdhani MA
    Heliyon; 2022 Oct; 8(10):e11031. PubMed ID: 36276738
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transformation behavior of hazardous jarosite into recyclable hematite in a solution with high concentrations of K
    Xing Y; Deng Z; Wei C; Li X; Li M
    Sci Rep; 2024 Jun; 14(1):13949. PubMed ID: 38886494
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Jarosite characteristics and its utilisation potentials.
    Pappu A; Saxena M; Asolekar SR
    Sci Total Environ; 2006 Apr; 359(1-3):232-43. PubMed ID: 15978656
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterisation of the sintering behaviour of Waelz slag from electric arc furnace (EAF) dust recycling for use in the clay ceramics industry.
    Quijorna N; de Pedro M; Romero M; Andrés A
    J Environ Manage; 2014 Jan; 132():278-86. PubMed ID: 24321287
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process.
    Tanong K; Coudert L; Mercier G; Blais JF
    J Environ Manage; 2016 Oct; 181():95-107. PubMed ID: 27318877
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acid decomposition and thiourea leaching of silver from hazardous jarosite residues: Effect of some cations on the stability of the thiourea system.
    Calla-Choque D; Nava-Alonso F; Fuentes-Aceituno JC
    J Hazard Mater; 2016 Nov; 317():440-448. PubMed ID: 27322901
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation of nanometer-sized black iron oxide pigment by recycling of blast furnace flue dust.
    Shen L; Qiao Y; Guo Y; Tan J
    J Hazard Mater; 2010 May; 177(1-3):495-500. PubMed ID: 20064689
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient extraction of metals (Fe, Zn, Pb) from hazardous jarosite using ionic liquid and waste-derived solvents.
    Kushwaha P; Agarwal M
    Environ Sci Pollut Res Int; 2024 Jun; 31(27):39533-39548. PubMed ID: 38822960
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Biohydrometallurgical technology of a complex copper concentrate process].
    Murav'ev MI; Fomchenko NV; Kondrat'eva TF
    Prikl Biokhim Mikrobiol; 2011; 47(6):663-71. PubMed ID: 22288195
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Study on simultaneous recycling of EAF dust and plastic waste containing TBBPA.
    Grabda M; Oleszek S; Shibata E; Nakamura T
    J Hazard Mater; 2014 Aug; 278():25-33. PubMed ID: 24945793
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recycling of hazardous waste as a new resource for nickel extraction.
    Gharabaghi M; Ejtemaei M; Irannajad M; Azadmehr AR
    Environ Technol; 2012; 33(13-15):1569-76. PubMed ID: 22988617
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recovery of manganese and zinc from waste Zn-C cell powder: Characterization and leaching.
    Biswas RK; Karmakar AK; Kumar SL; Hossain MN
    Waste Manag; 2015 Dec; 46():529-35. PubMed ID: 26387051
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chemical characterization of dust particles recovered from bag filters of electric arc furnaces for steelmaking: some factors influencing the formation of hexachlorobenzene.
    Tsubouchi N; Hashimoto H; Ohtaka N; Ohtsuka Y
    J Hazard Mater; 2010 Nov; 183(1-3):116-24. PubMed ID: 20674160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.