BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 32615525)

  • 1. Repurposing old drugs to fight multidrug resistant cancers.
    Dinić J; Efferth T; García-Sosa AT; Grahovac J; Padrón JM; Pajeva I; Rizzolio F; Saponara S; Spengler G; Tsakovska I
    Drug Resist Updat; 2020 Sep; 52():100713. PubMed ID: 32615525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anticancer Drug Discovery By Structure-Based Repositioning Approach.
    Modh DH; Kulkarni VM
    Mini Rev Med Chem; 2024; 24(1):60-91. PubMed ID: 37165589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-aided drug repurposing for cancer therapy: Approaches and opportunities to challenge anticancer targets.
    Mottini C; Napolitano F; Li Z; Gao X; Cardone L
    Semin Cancer Biol; 2021 Jan; 68():59-74. PubMed ID: 31562957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repurposing approved non-oncology drugs for cancer therapy: a comprehensive review of mechanisms, efficacy, and clinical prospects.
    Mohi-Ud-Din R; Chawla A; Sharma P; Mir PA; Potoo FH; Reiner Ž; Reiner I; Ateşşahin DA; Sharifi-Rad J; Mir RH; Calina D
    Eur J Med Res; 2023 Sep; 28(1):345. PubMed ID: 37710280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational approaches in cancer multidrug resistance research: Identification of potential biomarkers, drug targets and drug-target interactions.
    Tolios A; De Las Rivas J; Hovig E; Trouillas P; Scorilas A; Mohr T
    Drug Resist Updat; 2020 Jan; 48():100662. PubMed ID: 31927437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in drug repositioning for the discovery of new anticancer drugs.
    Shim JS; Liu JO
    Int J Biol Sci; 2014; 10(7):654-63. PubMed ID: 25013375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cell-based high-throughput screen identifies inhibitors that overcome P-glycoprotein (Pgp)-mediated multidrug resistance.
    Zahra R; Furqan M; Ullah R; Mithani A; Saleem RSZ; Faisal A
    PLoS One; 2020; 15(6):e0233993. PubMed ID: 32484843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug repositioning in cancer: The current situation in Japan.
    Masuda T; Tsuruda Y; Matsumoto Y; Uchida H; Nakayama KI; Mimori K
    Cancer Sci; 2020 Apr; 111(4):1039-1046. PubMed ID: 31957175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug Repurposing Strategies for Non-cancer to Cancer Therapeutics.
    Singhal S; Maheshwari P; Krishnamurthy PT; Patil VM
    Anticancer Agents Med Chem; 2022 Aug; 22(15):2726-2756. PubMed ID: 35301945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors.
    Dallavalle S; Dobričić V; Lazzarato L; Gazzano E; Machuqueiro M; Pajeva I; Tsakovska I; Zidar N; Fruttero R
    Drug Resist Updat; 2020 May; 50():100682. PubMed ID: 32087558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational drug repositioning for cancer therapeutics.
    Jiao M; Liu G; Xue Y; Ding C
    Curr Top Med Chem; 2015; 15(8):767-75. PubMed ID: 25732789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Drug-Repurposing-Driven Advances in the Discovery of Novel Antibiotics.
    Konreddy AK; Rani GU; Lee K; Choi Y
    Curr Med Chem; 2019; 26(28):5363-5388. PubMed ID: 29984648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repurposing Marketed Drugs as Antidepressants with In Silico, In Vivo, and In Vitro Screening Methods.
    Naveena P; Usha KK; Swetha M; Hemalatha M; Swathi K
    Adv Exp Med Biol; 2023; 1423():271-278. PubMed ID: 37525054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prioritization of candidate cancer drugs based on a drug functional similarity network constructed by integrating pathway activities and drug activities.
    Di J; Zheng B; Kong Q; Jiang Y; Liu S; Yang Y; Han X; Sheng Y; Zhang Y; Cheng L; Han J
    Mol Oncol; 2019 Oct; 13(10):2259-2277. PubMed ID: 31408580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico drug repositioning: what we need to know.
    Liu Z; Fang H; Reagan K; Xu X; Mendrick DL; Slikker W; Tong W
    Drug Discov Today; 2013 Feb; 18(3-4):110-5. PubMed ID: 22935104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational drug repurposing for cancer by inclusion of the unbiased molecular dynamics simulation in the structure-based virtual screening approach: Challenges and breakthroughs.
    Sohraby F; Aryapour H
    Semin Cancer Biol; 2021 Jan; 68():249-257. PubMed ID: 32360530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale Virtual Screening Optimization for Shotgun Drug Repurposing Using the CANDO Platform.
    Hudson ML; Samudrala R
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33925237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The FLT3 inhibitor midostaurin selectively resensitizes ABCB1-overexpressing multidrug-resistant cancer cells to conventional chemotherapeutic agents.
    Hsiao SH; Lusvarghi S; Huang YH; Ambudkar SV; Hsu SC; Wu CP
    Cancer Lett; 2019 Mar; 445():34-44. PubMed ID: 30639533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating ROS to overcome multidrug resistance in cancer.
    Cui Q; Wang JQ; Assaraf YG; Ren L; Gupta P; Wei L; Ashby CR; Yang DH; Chen ZS
    Drug Resist Updat; 2018 Nov; 41():1-25. PubMed ID: 30471641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diverse Targeted Approaches to Battle Multidrug Resistance in Cancer.
    Shankaraiah N; Nekkanti S; Ommi O; P S LS
    Curr Med Chem; 2019; 26(39):7059-7080. PubMed ID: 29637849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.