These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32615546)

  • 1. Tough pNAGA hydrogel hybridized porcine pericardium for the pre-mounted TAVI valve with improved anti-tearing properties and hemocompatibility.
    Jin L; He H; Yang F; Xu L; Guo G; Wang Y
    Biomed Mater; 2020 Oct; 15(6):065013. PubMed ID: 32615546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogel hybrid porcine pericardium for the fabrication of a pre-mounted TAVI valve with improved biocompatibility.
    Guo G; Jin W; Jin L; Chen L; Lei Y; Wang Y
    J Mater Chem B; 2019 Mar; 7(9):1427-1434. PubMed ID: 32255013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inorganic-polymerization crosslinked tissue-siloxane hybrid as potential biomaterial for bioprosthetic heart valves.
    Yang F; He H; Xu L; Jin L; Guo G; Wang Y
    J Biomed Mater Res A; 2021 May; 109(5):754-765. PubMed ID: 32681740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radical polymerization-crosslinking method for improving extracellular matrix stability in bioprosthetic heart valves with reduced potential for calcification and inflammatory response.
    Guo G; Jin L; Jin W; Chen L; Lei Y; Wang Y
    Acta Biomater; 2018 Dec; 82():44-55. PubMed ID: 30326277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre-mounted dry TAVI valve with improved endothelialization potential using REDV-loaded PEGMA hydrogel hybrid pericardium.
    Yang L; Huang X; Deng L; Ma X; Jiang H; Ning Q; Liang Z; Lei Y; Wang Y
    J Mater Chem B; 2020 Apr; 8(13):2689-2701. PubMed ID: 32149310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crosslinking porcine aortic valve by radical polymerization for the preparation of BHVs with improved cytocompatibility, mild immune response, and reduced calcification.
    Xu L; Yang F; Ge Y; Guo G; Wang Y
    J Biomater Appl; 2021 Apr; 35(9):1218-1232. PubMed ID: 33478311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double-Network Hydrogel Armored Decellularized Porcine Pericardium as Durable Bioprosthetic Heart Valves.
    Cheng S; Liu X; Qian Y; Maitusong M; Yu K; Cao N; Fang J; Liu F; Chen J; Xu D; Zhu G; Ren T; Wang J
    Adv Healthc Mater; 2022 Apr; 11(8):e2102059. PubMed ID: 34969157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-crosslinked bioprosthetic heart valves prepared by glutaraldehyde crosslinked pericardium and poly-2-hydroxyethyl methacrylate exhibited improved antithrombogenicity and anticalcification properties.
    Huang X; Zheng C; Ding K; Zhang S; Lei Y; Wei Q; Yang L; Wang Y
    Acta Biomater; 2022 Dec; 154():244-258. PubMed ID: 36306983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visible light-induced cross-linking of porcine pericardium for the improvement of endothelialization, anti-tearing, and anticalcification properties.
    Yang F; Xu L; Guo G; Wang Y
    J Biomed Mater Res A; 2022 Jan; 110(1):31-42. PubMed ID: 34245103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A universal strategy for the construction of polymer brush hybrid non-glutaraldehyde heart valves with robust anti-biological contamination performance and improved endothelialization potential.
    Yu T; Zheng C; Chen X; Pu H; Li G; Jiang Q; Wang Y; Guo Y
    Acta Biomater; 2023 Apr; 160():87-97. PubMed ID: 36812953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A combination of hydrogen bonding and chemical covalent crosslinking to fabricate a novel swim-bladder-derived dry heart valve material yields advantageous mechanical and biological properties.
    Lan X; Zhao Q; Zhang J; Lei Y; Wang Y
    Biomed Mater; 2021 Feb; 16(1):015014. PubMed ID: 33586662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arginine-grafted porcine pericardium by copolymerization to improve the cytocompatibility, hemocompatibility and anti-calcification properties of bioprosthetic heart valve materials.
    Liang X; Zheng C; Ding K; Huang X; Zhang S; Lei Y; Yu K; Wang Y
    J Mater Chem B; 2022 Jul; 10(29):5571-5581. PubMed ID: 35791926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A versatile drug-controlled release polymer brush hybrid non-glutaraldehyde bioprosthetic heart valves with enhanced anti-inflammatory, anticoagulant and anti-calcification properties, and superior mechanical performance.
    Yu T; Li G; Chen X; Kuang D; Jiang Q; Guo Y; Wang Y
    Biomaterials; 2023 May; 296():122070. PubMed ID: 36868031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Donkey pericardium compares favorably with commercial xenopericardia used in the manufacture of transcatheter heart valves.
    Mao J; Rassoli A; Tong Y; Rouse EN; Le-Bel G; How D; Germain L; Fatouraee N; Zhang Z; Reed RR; Guidoin R
    Artif Organs; 2019 Oct; 43(10):976-987. PubMed ID: 31140630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bioprosthetic heart valve cross-linked by a non-glutaraldehyde reagent with improved biocompatibility, endothelialization, anti-coagulation and anti-calcification properties.
    Yu T; Yang W; Zhuang W; Tian Y; Kong Q; Chen X; Li G; Wang Y
    J Mater Chem B; 2021 May; 9(19):4031-4038. PubMed ID: 33908590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A synergistic strategy of dual-crosslinking and loading intelligent nanogels for enhancing anti-coagulation, pro-endothelialization and anti-calcification properties in bioprosthetic heart valves.
    Hu M; Shi S; Peng X; Pu X; Yu X
    Acta Biomater; 2023 Nov; 171():466-481. PubMed ID: 37793601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between structural changes and acute thrombogenicity in transcatheter pericardium valves after crimping and balloon deployment.
    Bourget JM; Zegdi R; Lin J; Wawryko P; Merhi Y; Convelbo C; Mao J; Fu Y; Xu T; Merkel NO; Wang L; Germain L; Zhang Z; Guidoin R
    Morphologie; 2017 Mar; 101(332):19-32. PubMed ID: 27423215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of transcatheter heart valve biomaterials: Biomechanical characterization of bovine and porcine pericardium.
    Caballero A; Sulejmani F; Martin C; Pham T; Sun W
    J Mech Behav Biomed Mater; 2017 Nov; 75():486-494. PubMed ID: 28826102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of transcatheter heart valve biomaterials: Computational modeling using bovine and porcine pericardium.
    Sulejmani F; Caballero A; Martin C; Pham T; Sun W
    J Mech Behav Biomed Mater; 2019 Sep; 97():159-170. PubMed ID: 31125889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vivo Response of Acellular Porcine Pericardial for Tissue Engineered Transcatheter Aortic Valves.
    Khorramirouz R; Go JL; Noble C; Morse D; Lerman A; Young MD
    Sci Rep; 2019 Jan; 9(1):1094. PubMed ID: 30705386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.