These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32615548)

  • 1. GaN nanowires grown by halide chemical vapour deposition as photoanodes for photo-electrochemical water oxidation reactions.
    Anbarasan N; Sadhasivam S; Mukilan M; Jeganathan K
    Nanotechnology; 2020 Jul; 31(42):425405. PubMed ID: 32615548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive self-powered heterojunction ultraviolet photodetector of p-GaN nanowires on Si by halide chemical vapour deposition.
    Anbarasan N; Sadhasivam S; Jeganathan K
    Nanotechnology; 2023 Jan; 34(13):. PubMed ID: 36584385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement in Photoelectrochemical Water Splitting Performance of GaN-nanowire Photoanode Using MXene.
    Noh S; Shin J; Lee J; Oh HM; Yu YT; Kim JS
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):8016-8023. PubMed ID: 38294420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved photoelectrochemical performance of GaN nanopillar photoanodes.
    Narangari PR; Karuturi SK; Lysevych M; Hoe Tan H; Jagadish C
    Nanotechnology; 2017 Apr; 28(15):154001. PubMed ID: 28301329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Efficient Photoelectrochemical Water Splitting Using GaN-Nanowire Photoanode with Tungsten Sulfides.
    Han S; Noh S; Yu YT; Lee CR; Lee SK; Kim JS
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):58028-58037. PubMed ID: 33337852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulation of Photoelectrochemical Water Splitting by Controlling Direction of Carrier Movement Using InGaN/GaN Hetero-Structure Nanowires.
    Noh S; Shin J; Yu YT; Ryu MY; Kim JS
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GaN nano-pyramid arrays as an efficient photoelectrode for solar water splitting.
    Hou Y; Yu X; Syed ZA; Shen S; Bai J; Wang T
    Nanotechnology; 2016 Nov; 27(45):455401. PubMed ID: 27727152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved solar hydrogen production by engineered doping of InGaN/GaN axial heterojunctions.
    Zhang H; Ebaid M; Tan J; Liu G; Min JW; Ng TK; Ooi BS
    Opt Express; 2019 Feb; 27(4):A81-A91. PubMed ID: 30876005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Type-II ZnO/ZnS core-shell nanowires: Earth-abundant photoanode for solar-driven photoelectrochemical water splitting.
    Hassan MA; Johar MA; Waseem A; Bagal IV; Ha JS; Ryu SW
    Opt Express; 2019 Feb; 27(4):A184-A196. PubMed ID: 30876134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core-shell photoanode developed by atomic layer deposition of Bi₂O₃ on Si nanowires for enhanced photoelectrochemical water splitting.
    Weng B; Xu F; Xu J
    Nanotechnology; 2014 Nov; 25(45):455402. PubMed ID: 25338216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and improved photoelectrochemical properties of a transferred GaN-based thin film with InGaN/GaN layers.
    Cao D; Xiao H; Gao Q; Yang X; Luan C; Mao H; Liu J; Liu X
    Nanoscale; 2017 Aug; 9(32):11504-11510. PubMed ID: 28766654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced solar-driven photoelectrochemical water splitting using nanoflower Au/CuO/GaN hybrid photoanodes.
    Abdelmoneim A; Elfayoumi MAK; Abdel-Wahab MS; Al-Enizi AM; Lee JK; Tawfik WZ
    RSC Adv; 2024 May; 14(24):16846-16858. PubMed ID: 38784418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transferred monolayer MoS
    Hassan MA; Kim MW; Johar MA; Waseem A; Kwon MK; Ryu SW
    Sci Rep; 2019 Dec; 9(1):20141. PubMed ID: 31882920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation.
    Hwang JS; Liu TY; Chattopadhyay S; Hsu GM; Basilio AM; Chen HW; Hsu YK; Tu WH; Lin YG; Chen KH; Li CC; Wang SB; Chen HY; Chen LC
    Nanotechnology; 2013 Feb; 24(5):055401. PubMed ID: 23324138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal Silicidation in Conjunction with Dopant Segregation: A Promising Strategy for Fabricating High-Performance Silicon-Based Photoanodes.
    Li S; She G; Xu J; Zhang S; Zhang H; Mu L; Ge C; Jin K; Luo J; Shi W
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39092-39097. PubMed ID: 32805824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesoporous Ultrathin In
    Yan G; Dong Y; Wu T; Xing S; Wang X
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52912-52920. PubMed ID: 34709787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoelectrochemical studies of InGaN/GaN MQW photoanodes.
    Butson J; Narangari PR; Karuturi SK; Yew R; Lysevych M; Tan HH; Jagadish C
    Nanotechnology; 2018 Jan; 29(4):045403. PubMed ID: 29192894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile and Large-Area Preparation of Porous Ag
    Cao Q; Yu J; Yuan K; Zhong M; Delaunay JJ
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19507-19512. PubMed ID: 28560876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational Design and Construction of Cocatalysts for Semiconductor-Based Photo-Electrochemical Oxygen Evolution: A Comprehensive Review.
    Xu XT; Pan L; Zhang X; Wang L; Zou JJ
    Adv Sci (Weinh); 2019 Jan; 6(2):1801505. PubMed ID: 30693190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the surface preparation and buffer layer on the morphology, electronic and optical properties of the GaN nanowires on Si.
    Bolshakov AD; Fedorov VV; Shugurov KY; Mozharov AM; Sapunov GA; Shtrom IV; Mukhin MS; Uvarov AV; Cirlin GE; Mukhin IS
    Nanotechnology; 2019 Sep; 30(39):395602. PubMed ID: 31234150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.