BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32615851)

  • 21. Influence of structural and material property uncertainties on biomechanics of intervertebral discs - Implications for disc tissue engineering.
    Wang W; Zhou C; Guo R; Cha T; Li G
    J Mech Behav Biomed Mater; 2021 Oct; 122():104661. PubMed ID: 34252706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Specimen specific parameter identification of ovine lumbar intervertebral discs: On the influence of fibre-matrix and fibre-fibre shear interactions.
    Reutlinger C; Bürki A; Brandejsky V; Ebert L; Büchler P
    J Mech Behav Biomed Mater; 2014 Feb; 30():279-89. PubMed ID: 24361932
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Effect of the Loading Rate on the Full-Field Strain Distribution on the Surface on the Intervertebral Discs.
    Maria Luisa R; Luca C
    J Biomech Eng; 2021 Jan; 143(1):. PubMed ID: 32601688
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ISSLS Prize Winner: A Detailed Examination of the Elastic Network Leads to a New Understanding of Annulus Fibrosus Organization.
    Yu J; Schollum ML; Wade KR; Broom ND; Urban JP
    Spine (Phila Pa 1976); 2015 Aug; 40(15):1149-57. PubMed ID: 25893352
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation of Nucleus Pulposus and Annulus Fibrosus Cells from the Intervertebral Disc.
    van den Akker GGH; Cremers A; Surtel DAM; Voncken W; Welting TJM
    Methods Mol Biol; 2021; 2221():41-52. PubMed ID: 32979197
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards intervertebral disc engineering: Bio-mimetics of form and function of the annulus fibrosus lamellae.
    Sharabi M; Wertheimer S; Wade KR; Galbusera F; Benayahu D; Wilke HJ; Haj-Ali R
    J Mech Behav Biomed Mater; 2019 Jun; 94():298-307. PubMed ID: 30951990
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ultra-structural organization of the elastic network in the intra- and inter-lamellar matrix of the intervertebral disc.
    Tavakoli J; Elliott DM; Costi JJ
    Acta Biomater; 2017 Aug; 58():269-277. PubMed ID: 28526629
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Effect of Axial Torsion on the Mechanical Properties of the Annulus Fibrosus.
    Harvey-Burgess M; Gregory DE
    Spine (Phila Pa 1976); 2019 Feb; 44(4):E195-E201. PubMed ID: 30721160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A microstructure-based model for a full lamellar-interlamellar displacement and shear strain mapping inside human intervertebral disc core.
    Kandil K; Zaïri F; Messager T; Zaïri F
    Comput Biol Med; 2021 Aug; 135():104629. PubMed ID: 34274895
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bovine and degenerated human annulus fibrosus: a microstructural and micromechanical comparison.
    Vergari C; Chan D; Clarke A; Mansfield JC; Meakin JR; Winlove PC
    Biomech Model Mechanobiol; 2017 Aug; 16(4):1475-1484. PubMed ID: 28378119
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GAG content, fiber stiffness, and fiber angle affect swelling-based residual stress in the intact annulus fibrosus.
    Yang B; O'Connell GD
    Biomech Model Mechanobiol; 2019 Jun; 18(3):617-630. PubMed ID: 30535612
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional microstructural reconstruction of the ovine intervertebral disc using ultrahigh field MRI.
    Sharabi M; Wade KR; Galbusera F; Rasche V; Haj-Ali R; Wilke HJ
    Spine J; 2018 Nov; 18(11):2119-2127. PubMed ID: 29969731
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Micro-mechanical damage of needle puncture on bovine annulus fibrosus fibrils studied using polarization-resolved Second Harmonic Generation(P-SHG) microscopy.
    Wang JY; Mansfield JC; Brasselet S; Vergari C; Meakin JR; Winlove CP
    J Mech Behav Biomed Mater; 2021 Jun; 118():104458. PubMed ID: 33761373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Repair and Regenerative Therapies of the Annulus Fibrosus of the Intervertebral Disc.
    Li X; Dou Q; Kong Q
    J Coll Physicians Surg Pak; 2016 Feb; 26(2):138-44. PubMed ID: 26876403
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling the failure precursor mechanism of lamellar fibrous tissues, example of the annulus fibrosus.
    Mengoni M; Jones AC; Wilcox RK
    J Mech Behav Biomed Mater; 2016 Oct; 63():265-272. PubMed ID: 27442918
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tensile properties of nondegenerate human lumbar anulus fibrosus.
    Ebara S; Iatridis JC; Setton LA; Foster RJ; Mow VC; Weidenbaum M
    Spine (Phila Pa 1976); 1996 Feb; 21(4):452-61. PubMed ID: 8658249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined flexion and compression negatively impact the mechanical integrity of the annulus fibrosus.
    Briar KJ; Gregory DE
    Eur Spine J; 2023 Mar; 32(3):831-838. PubMed ID: 36631712
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elastic fibers in the anulus fibrosus of the dog intervertebral disc.
    Johnson EF; Caldwell RW; Berryman HE; Miller A; Chetty K
    Acta Anat (Basel); 1984; 118(4):238-42. PubMed ID: 6720244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of needle damage on annulus fibrosus micromechanics.
    Vergari C; Mansfield JC; Chan D; Clarke A; Meakin JR; Winlove PC
    Acta Biomater; 2017 Nov; 63():274-282. PubMed ID: 28917706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A growth-based model for the prediction of fiber angle distribution in the intervertebral disc annulus fibrosus.
    Michalek AJ
    Biomech Model Mechanobiol; 2019 Oct; 18(5):1363-1369. PubMed ID: 30980210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.